Vaccine breakthrough and rebound infections modeling: Analysis for the United States and the ten U.S. HHS regions

[1]  T. Ogata,et al.  SARS-CoV-2 Incubation Period during the Omicron BA.5–Dominant Period in Japan , 2023, Emerging infectious diseases.

[2]  B. Nunes,et al.  Comparative Effectiveness of COVID-19 Vaccines in Preventing Infections and Disease Progression from SARS-CoV-2 Omicron BA.5 and BA.2, Portugal , 2023, Emerging infectious diseases.

[3]  F. Zhu,et al.  Efficacy of SARS-CoV-2 vaccines and the dose–response relationship with three major antibodies: a systematic review and meta-analysis of randomised controlled trials , 2023, The Lancet Microbe.

[4]  S. Xia,et al.  Optimal control strategies of SARS-CoV-2 Omicron supported by invasive and dynamic models , 2022, Infectious Diseases of Poverty.

[5]  D. Barouch,et al.  Neutralization Escape by SARS-CoV-2 Omicron Subvariant BA.4.6 , 2022, The New England journal of medicine.

[6]  B. Cowling,et al.  Transmission dynamics of SARS-CoV-2 Omicron variant infections in Hangzhou, Zhejiang, China, January-February 2022 , 2022, International Journal of Infectious Diseases.

[7]  O. A. Ogun,et al.  BNT162b2 vaccine effectiveness against SARS-CoV-2 omicron BA.4 and BA.5 , 2022, The Lancet Infectious Diseases.

[8]  Z. Du,et al.  Reproduction numbers of SARS-CoV-2 Omicron subvariants , 2022, Journal of travel medicine.

[9]  Tetsuro Kobayashi,et al.  Basic reproduction number of the COVID-19 Delta variant: Estimation from multiple transmission datasets. , 2022, Mathematical biosciences and engineering : MBE.

[10]  Qian Wang,et al.  Resistance of SARS-CoV-2 omicron subvariant BA.4.6 to antibody neutralisation , 2022, bioRxiv.

[11]  E. Nicastri,et al.  SARS-CoV-2 nasopharyngeal viral load in individuals infected with BA.2, compared to Alpha, Gamma, Delta and BA.1 variants: A single-center comparative analysis , 2022, Journal of Clinical Virology.

[12]  F. Alhumaydhi,et al.  Omicron variant (B.1.1.529) and its sublineages: What do we know so far amid the emergence of recombinant variants of SARS-CoV-2? , 2022, Biomedicine & Pharmacotherapy.

[13]  D. He,et al.  Estimating the incubation period of SARS-CoV-2 Omicron BA.1 variant in comparison with that during the Delta variant dominance in South Korea , 2022, One Health.

[14]  O. M. Otunuga Analysis of multi-strain infection of vaccinated and recovered population through epidemic model: Application to COVID-19 , 2022, PloS one.

[15]  An Epidemiological Update on COVID -19 , 2022 .

[16]  E. Quiros-Roldan,et al.  Omicron BA.2 Lineage, the “Stealth” Variant: Is It Truly a Silent Epidemic? A Literature Review , 2022, International journal of molecular sciences.

[17]  O. Pybus,et al.  Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa , 2022, Nature Medicine.

[18]  B. Saussereau,et al.  A multi-strain epidemic model for COVID-19 with infected and asymptomatic cases: Application to French data , 2022, Journal of Theoretical Biology.

[19]  Y. Liu,et al.  The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta , 2022, Journal of Travel Medicine.

[20]  Y. Liu,et al.  The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta , 2022, Journal of travel medicine.

[21]  Suresh Kumar,et al.  Omicron (BA.1) and sub‐variants (BA.1.1, BA.2, and BA.3) of SARS‐CoV‐2 spike infectivity and pathogenicity: A comparative sequence and structural‐based computational assessment , 2022, bioRxiv.

[22]  F. Rahimi,et al.  The Omicron subvariant BA.2: Birth of a new challenge during the COVID-19 pandemic , 2022, International Journal of Surgery.

[23]  C. Zheng,et al.  Omicron variant of SARS‐CoV‐2: Genomics, transmissibility, and responses to current COVID‐19 vaccines , 2022, Journal of medical virology.

[24]  Tetsuro Kobayashi,et al.  Relative Reproduction Number of SARS-CoV-2 Omicron (B.1.1.529) Compared with Delta Variant in South Africa , 2021, Journal of clinical medicine.

[25]  T. Burki Omicron variant and booster COVID-19 vaccines , 2021, The Lancet Respiratory Medicine.

[26]  O. M. Otunuga Estimation of epidemiological parameters for COVID-19 cases using a stochastic SEIRS epidemic model with vital dynamics , 2021, Results in Physics.

[27]  Ahmed A. Mohsen,et al.  Modeling the dynamics of COVID-19 with carrier effect and environmental contamination , 2021, Int. J. Model. Simul. Sci. Comput..

[28]  Carl A. B. Pearson,et al.  Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England , 2021, Science.

[29]  Edilson F. Arruda,et al.  Modelling and optimal control of multi strain epidemics, with application to COVID-19 , 2021, PloS one.

[30]  A. Ullah,et al.  Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data , 2020, Results in Physics.

[31]  K. Allali,et al.  Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic , 2020, Nonlinear Dynamics.

[32]  K. Allali,et al.  Analysis and Optimal Control of a Multistrain SEIR Epidemic Model with Saturated Incidence Rate and Treatment , 2020, Differential Equations and Dynamical Systems.

[33]  L. Yang,et al.  The relative transmissibility of asymptomatic COVID-19 infections among close contacts , 2020, International Journal of Infectious Diseases.

[34]  Réka Howard,et al.  The local stability of a modified multi-strain SIR model for emerging viral strains , 2020, medRxiv.

[35]  E. McBryde,et al.  Coupled, multi-strain epidemic models of mutating pathogens. , 2016, Mathematical biosciences.

[36]  Maia Martcheva,et al.  An Introduction to Mathematical Epidemiology , 2015 .

[37]  Hans Josef Pesch,et al.  Optimal Control Strategies , 2007 .

[38]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[39]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[40]  Wladyslaw Kulpa,et al.  THE POINCARE-MIRANDA THEOREM , 1997 .

[41]  Stefano Tarantola,et al.  Sensitivity Analysis as an Ingredient of Modeling , 2000 .

[42]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..