In the loop: promoter–enhancer interactions and bioinformatics

Enhancer–promoter regulation is a fundamental mechanism underlying differential transcriptional regulation. Spatial chromatin organization brings remote enhancers in contact with target promoters in cis to regulate gene expression. There is considerable evidence for promoter–enhancer interactions (PEIs). In the recent years, genome-wide analyses have identified signatures and mapped novel enhancers; however, being able to precisely identify their target gene(s) requires massive biological and bioinformatics efforts. In this review, we give a short overview of the chromatin landscape and transcriptional regulation. We discuss some key concepts and problems related to chromatin interaction detection technologies, and emerging knowledge from genome-wide chromatin interaction data sets. Then, we critically review different types of bioinformatics analysis methods and tools related to representation and visualization of PEI data, raw data processing and PEI prediction. Lastly, we provide specific examples of how PEIs have been used to elucidate a functional role of non-coding single-nucleotide polymorphisms. The topic is at the forefront of epigenetic research, and by highlighting some future bioinformatics challenges in the field, this review provides a comprehensive background for future PEI studies.

[1]  Esther Rheinbay,et al.  H2A.Z landscapes and dual modifications in pluripotent and multipotent stem cells underlie complex genome regulatory functions , 2012, Genome Biology.

[2]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[3]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[4]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[5]  R. Andersson Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[6]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[7]  Sergey V. Razin,et al.  In vivo formaldehyde cross-linking: it is time for black box analysis , 2014, Briefings in functional genomics.

[8]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[9]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[10]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[11]  J. Banerji,et al.  Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. , 1981, Cell.

[12]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[13]  Ann Dean,et al.  Enhancer and promoter interactions-long distance calls. , 2012, Current opinion in genetics & development.

[14]  Hongen Zhang,et al.  RCircos: an R package for Circos 2D track plots , 2013, BMC Bioinformatics.

[15]  Ming Hu,et al.  HiCNorm: removing biases in Hi-C data via Poisson regression , 2012, Bioinform..

[16]  André L. Martins,et al.  Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers , 2014, Nature Genetics.

[17]  Yan Wang,et al.  H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin , 2013, Genes & development.

[18]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[19]  M. Hemberg,et al.  Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. , 2015, Cold Spring Harbor perspectives in biology.

[20]  K. Tan,et al.  Global view of enhancer–promoter interactome in human cells , 2014, Proceedings of the National Academy of Sciences.

[21]  Boris Lenhard,et al.  r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data , 2013, Nucleic acids research.

[22]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[23]  Geir Kjetil Sandve,et al.  HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization , 2014, Bioinform..

[24]  William Stafford Noble,et al.  A Three-Dimensional Model of the Yeast Genome , 2010, Nature.

[25]  Robert S Illingworth,et al.  Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization , 2014, Genes & development.

[26]  K. Bystricky,et al.  H2A.Z-dependent crosstalk between enhancer and promoter regulates Cyclin D1 expression , 2013, Oncogene.

[27]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[28]  M. Horan,et al.  Application of Chromosome Conformation Capture (3C) to the Study of Human Genetic Disease , 2012 .

[29]  F. Iborra,et al.  Association between active genes occurs at nuclear speckles and is modulated by chromatin environment , 2008, The Journal of cell biology.

[30]  M. Lupien,et al.  Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits , 2014, Genome research.

[31]  Ting Wang,et al.  Exploring long-range genome interactions using the WashU Epigenome Browser , 2013, Nature Methods.

[32]  Tae-Kyung Kim,et al.  Enhancer RNA facilitates NELF release from immediate early genes. , 2014, Molecular cell.

[33]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[34]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[35]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[36]  L. Mirny,et al.  Iterative Correction of Hi-C Data Reveals Hallmarks of Chromosome Organization , 2012, Nature Methods.

[37]  William Stafford Noble,et al.  Analysis methods for studying the 3D architecture of the genome , 2015, Genome Biology.

[38]  Stephan Sauer,et al.  Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms , 2008, Cell.

[39]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[40]  P. Majumder,et al.  Cohesin Regulates MHC Class II Genes through Interactions with MHC Class II Insulators , 2011, The Journal of Immunology.

[41]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[42]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[43]  Romain Koszul,et al.  Normalization of a chromosomal contact map , 2012, BMC Genomics.

[44]  Wendy A. Bickmore,et al.  Anterior-posterior differences in HoxD chromatin topology in limb development , 2012, Development.

[45]  M. Neuberger Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. , 1983, The EMBO journal.

[46]  Masaru Taniguchi Tomio Tada 1934–2010 , 2010, Nature Immunology.

[47]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[48]  Laura E. DeMare,et al.  The genomic landscape of cohesin-associated chromatin interactions , 2013, Genome research.

[49]  M. Groudine,et al.  Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human beta-globin locus. , 2000, Genes & development.

[50]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[51]  Wendy A Bickmore,et al.  Chromosome organization in the nucleus - charting new territory across the Hi-Cs. , 2012, Current opinion in genetics & development.

[52]  Alexander S. Garruss,et al.  Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. , 2012, Genes & development.

[53]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[54]  C. Kai,et al.  CAGE: cap analysis of gene expression , 2006, Nature Methods.

[55]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[56]  J. Dekker,et al.  Genomics tools for the unraveling of chromosome architecture , 2010, Nature Biotechnology.

[57]  Kairong Cui,et al.  H2A.Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. , 2013, Cell stem cell.

[58]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[59]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[60]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[61]  Erik Splinter,et al.  Looping and interaction between hypersensitive sites in the active beta-globin locus. , 2002, Molecular cell.

[62]  J. T. Kadonaga,et al.  Regulation of gene expression via the core promoter and the basal transcriptional machinery. , 2010, Developmental biology.

[63]  Zlatko Trajanoski,et al.  Co-expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories , 2013, Cellular and Molecular Life Sciences.

[64]  Hongling Liao,et al.  Long-range enhancers on 8q24 regulate c-Myc , 2010, Proceedings of the National Academy of Sciences.

[65]  Wendy A Bickmore,et al.  Enhancers: from developmental genetics to the genetics of common human disease. , 2011, Developmental cell.

[66]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[67]  Giacomo Cavalli,et al.  Polycomb: a paradigm for genome organization from one to three dimensions. , 2012, Current opinion in cell biology.

[68]  Daryl M. Gohl,et al.  Mechanism of Chromosomal Boundary Action: Roadblock, Sink, or Loop? , 2011, Genetics.

[69]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[70]  C. Allis,et al.  Operating on chromatin, a colorful language where context matters. , 2011, Journal of molecular biology.

[71]  A. Pombo,et al.  Three-dimensional genome architecture: players and mechanisms , 2015, Nature Reviews Molecular Cell Biology.

[72]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[73]  Li Teng,et al.  4DGenome: a comprehensive database of chromatin interactions , 2015, Bioinform..

[74]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[75]  Terry Magnuson,et al.  fourSig: a method for determining chromosomal interactions in 4C-Seq data , 2014, Nucleic acids research.

[76]  J. Ragoussis,et al.  A Large Fraction of Extragenic RNA Pol II Transcription Sites Overlap Enhancers , 2010, PLoS biology.

[77]  A. Dean On a chromosome far, far away: LCRs and gene expression. , 2006, Trends in genetics : TIG.

[78]  J. Wysocka,et al.  Modification of enhancer chromatin: what, how, and why? , 2013, Molecular cell.

[79]  Jan Padeken,et al.  Nucleolus and nuclear periphery: velcro for heterochromatin. , 2014, Current opinion in cell biology.

[80]  T. Cremer,et al.  Chromosome territories. , 2010, Cold Spring Harbor perspectives in biology.

[81]  Pak Chung Sham,et al.  GWAS3D: detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications , 2013, Nucleic Acids Res..

[82]  William Stafford Noble,et al.  Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts , 2014, Genome research.

[83]  Monika S. Kowalczyk,et al.  Intragenic enhancers act as alternative promoters. , 2012, Molecular cell.

[84]  W. Sung,et al.  Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations , 2013, Nature.

[85]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[86]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[87]  W. Bickmore,et al.  Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. , 2004, Genes & development.

[88]  Stephen Smale,et al.  Functional organization of the human 4D Nucleome , 2015, Proceedings of the National Academy of Sciences.

[89]  Axel Visel,et al.  Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers , 2014, PLoS genetics.

[90]  W. Bickmore,et al.  Single-Cell Dynamics of Genome-Nuclear Lamina Interactions , 2013, Cell.

[91]  K. Zhao,et al.  Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3 , 2013, Genome Biology.

[92]  Michael P. Snyder,et al.  Sushi.R: flexible, quantitative and integrative genomic visualizations for publication-quality multi-panel figures , 2014, Bioinform..

[93]  K. Zhao,et al.  Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization , 2012, Cell Research.

[94]  A. Sandelin,et al.  Genomic and chromatin signals underlying transcription start-site selection. , 2011, Trends in genetics : TIG.

[95]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[96]  G. Bejerano,et al.  Enhancers: five essential questions , 2013, Nature Reviews Genetics.

[97]  Jörg Langowski,et al.  The statistical-mechanics of chromosome conformation capture , 2013, Nucleus.

[98]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[99]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[100]  Thomas J. Ha,et al.  Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells , 2015, Science.

[101]  Justin M. O'Sullivan,et al.  The missing story behind Genome Wide Association Studies: single nucleotide polymorphisms in gene deserts have a story to tell , 2014, Front. Genet..

[102]  Geir Kjetil Sandve,et al.  Identifying elemental genomic track types and representing them uniformly , 2011, BMC Bioinformatics.

[103]  Robert Tjian,et al.  Looping Back to Leap Forward: Transcription Enters a New Era , 2014, Cell.

[104]  K. Bystricky,et al.  TIP48/Reptin and H2A.Z Requirement for Initiating Chromatin Remodeling in Estrogen-Activated Transcription , 2013, PLoS genetics.

[105]  Chuan Wang,et al.  The 3 DGD : a database of genome 3 D structure , 2014 .

[106]  Richard Axel,et al.  Interchromosomal Interactions and Olfactory Receptor Choice , 2006, Cell.

[107]  Tom Misteli,et al.  Functional implications of genome topology , 2013, Nature Structural &Molecular Biology.

[108]  J. Banerji,et al.  A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes , 1983, Cell.

[109]  Chee Seng Chan,et al.  CTCF-Mediated Functional Chromatin Interactome in Pluripotent Cells , 2011, Nature Genetics.

[110]  A. Tanay,et al.  Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture , 2011, Nature Genetics.

[111]  Kerstin B. Meyer,et al.  A Functional Variant at a Prostate Cancer Predisposition Locus at 8q24 Is Associated with PVT1 Expression , 2011, PLoS genetics.

[112]  Chao Li,et al.  Human transcriptional interactome of chromatin contribute to gene co-expression , 2010, BMC Genomics.

[113]  W. de Laat,et al.  Maintenance of Long-Range DNA Interactions after Inhibition of Ongoing RNA Polymerase II Transcription , 2008, PloS one.

[114]  W. Bickmore,et al.  H4K16 acetylation marks active genes and enhancers of embryonic stem cells, but does not alter chromatin compaction , 2013, Genome research.

[115]  Ivan Junier,et al.  Spatial and Topological Organization of DNA Chains Induced by Gene Co-localization , 2010, PLoS Comput. Biol..

[116]  Qi Zheng,et al.  HIPPIE: a high-throughput identification pipeline for promoter interacting enhancer elements , 2015, Bioinform..

[117]  P. Scacheri,et al.  Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. , 2011, Genome research.

[118]  R. Tjian,et al.  Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation , 2010, Nature Reviews Genetics.

[119]  Hideki Tanizawa,et al.  Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation , 2010, Nucleic acids research.

[120]  Edwin Smith,et al.  Enhancer biology and enhanceropathies , 2014, Nature Structural &Molecular Biology.

[121]  Peter R Cook,et al.  A model for all genomes: the role of transcription factories. , 2010, Journal of molecular biology.

[122]  Nick Gilbert,et al.  Chromatin Architecture of the Human Genome Gene-Rich Domains Are Enriched in Open Chromatin Fibers , 2004, Cell.

[123]  J. Ernst Mapping enhancer and promoter interactions , 2012, Cell Research.

[124]  Frank Grosveld,et al.  Spatial organization of gene expression: the active chromatin hub , 2003, Chromosome Research.

[125]  P. Fraser,et al.  Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus , 2009, Nature.

[126]  G. Kreiman,et al.  Widespread transcription at neuronal activity-regulated enhancers , 2010, Nature.

[127]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[128]  Leonid A. Mirny,et al.  Chromatin Loops as Allosteric Modulators of Enhancer-Promoter Interactions , 2014, bioRxiv.

[129]  H. Leonhardt,et al.  Differentiation and large scale spatial organization of the genome. , 2010, Current opinion in genetics & development.

[130]  S. Tonegawa,et al.  A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene , 1983, Cell.

[131]  R. Shiekhattar,et al.  Architectural and Functional Commonalities between Enhancers and Promoters , 2015, Cell.

[132]  J. Ragoussis,et al.  Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. , 2000, Journal of cell science.

[133]  Nicolas Tanguy-le-Gac,et al.  DNA Dynamics during Early Double-Strand Break Processing Revealed by Non-Intrusive Imaging of Living Cells , 2014, PLoS genetics.

[134]  Heinrich Leonhardt,et al.  Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system , 2014, Nucleus.

[135]  A. Shilatifard,et al.  The MLL3/MLL4 Branches of the COMPASS Family Function as Major Histone H3K4 Monomethylases at Enhancers , 2013, Molecular and Cellular Biology.

[136]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[137]  J. Banerji,et al.  Expression of a β-globin gene is enhanced by remote SV40 DNA sequences , 1981, Cell.

[138]  S. Russell,et al.  Chromatin signatures at Notch‐regulated enhancers reveal large‐scale changes in H3K56ac upon activation , 2015, The EMBO journal.

[139]  Ferenc Müller,et al.  Chromatin and DNA sequences in defining promoters for transcription initiation. , 2014, Biochimica et biophysica acta.

[140]  H. Kimura,et al.  H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells , 2012, BMC Genomics.

[141]  A. Gavrilov,et al.  Communication of genome regulatory elements in a folded chromosome , 2013, FEBS letters.

[142]  Martin Dugas,et al.  Basic4Cseq: an R/Bioconductor package for analyzing 4C-seq data , 2014, Bioinform..

[143]  Josée Dostie,et al.  An Overview of Genome Organization and How We Got There: from FISH to Hi-C , 2015, Microbiology and Molecular Reviews.

[144]  L. Boyer Faculty Opinions recommendation of H2A.Z-dependent crosstalk between enhancer and promoter regulates cyclin D1 expression. , 2014 .

[145]  P. Cook,et al.  Transcription factories: genome organization and gene regulation. , 2013, Chemical reviews.

[146]  Shane J. Neph,et al.  DNase I–hypersensitive exons colocalize with promoters and distal regulatory elements , 2013, Nature Genetics.

[147]  Michael R. Green,et al.  Transcriptional regulatory elements in the human genome. , 2006, Annual review of genomics and human genetics.

[148]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[149]  Peggy Hall,et al.  The NHGRI GWAS Catalog, a curated resource of SNP-trait associations , 2013, Nucleic Acids Res..

[150]  Job Dekker,et al.  My5C: web tools for chromosome conformation capture studies , 2009, Nature Methods.

[151]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[152]  Nathaniel D. Heintzman,et al.  9p21 DNA variants associated with Coronary Artery Disease impair IFNγ signaling response , 2011, Nature.

[153]  Chuan Wang,et al.  The 3DGD: a database of genome 3D structure , 2014, Bioinform..

[154]  Dinah S Singer,et al.  Core promoters in transcription: old problem, new insights. , 2015, Trends in biochemical sciences.

[155]  D. Corcoran,et al.  Human promoters are intrinsically directional. , 2015, Molecular cell.

[156]  D. Duboule,et al.  Topology of mammalian developmental enhancers and their regulatory landscapes , 2013, Nature.

[157]  R. Sandberg,et al.  Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution , 2015, Genome Biology.

[158]  Zlatko Trajanoski,et al.  Transcription factories , 2012, Front. Gene..

[159]  Emmanuel Barillot,et al.  HiTC - Exploration of High Throughput ’C’ experiments , 2013 .

[160]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[161]  Nicola K. Wilson,et al.  Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene , 2011, Human molecular genetics.

[162]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[163]  S. K. Zaidi,et al.  C‐ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher‐Order Chromatin Organization , 2016, Journal of cellular physiology.

[164]  H. Aburatani,et al.  Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster , 2009, The EMBO journal.

[165]  R. Shiekhattar,et al.  Activating RNAs associate with Mediator to enhance chromatin architecture and transcription , 2013, Nature.

[166]  C. Nusbaum,et al.  Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. , 2006, Genome research.

[167]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .