Bulk metallic glass-like scattering signal in small metallic nanoparticles.

The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order.

[1]  R. Jin,et al.  Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. , 2013, Journal of the American Chemical Society.

[2]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[3]  Yang Ding,et al.  Long-Range Topological Order in Metallic Glass , 2011, Science.

[4]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[5]  Daeha Seo,et al.  Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, and truncated tetrahedra , 2008 .

[6]  P. Duwez,et al.  Non-crystalline Structure in Solidified Gold–Silicon Alloys , 1960, Nature.

[7]  T. Proffen,et al.  Building and refining complete nanoparticle structures with total scattering data , 2011 .

[8]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  A. Stoica,et al.  Power-law scaling and fractal nature of medium-range order in metallic glasses. , 2009, Nature materials.

[10]  Younan Xia,et al.  Cover Picture: Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Silver (Chem. Eur. J. 2/2005) , 2005 .

[11]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[12]  C. Murray,et al.  Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). , 2010, Journal of the American Chemical Society.

[13]  Peidong Yang,et al.  Shaping binary metal nanocrystals through epitaxial seeded growth. , 2007, Nature materials.

[14]  Manos Mavrikakis,et al.  Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. , 2008, Nature materials.

[15]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[16]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[17]  T. Gu,et al.  Origin of splitting of the second peak in the pair-distribution function for metallic glasses , 2011 .

[18]  Younan Xia,et al.  Shape-controlled synthesis of metal nanostructures: the case of silver. , 2005, Chemistry.

[19]  Dong-Kyun Ko,et al.  Near-Infrared Absorption of Monodisperse Silver Telluride (Ag2Te) Nanocrystals and Photoconductive Response of Their Self-Assembled Superlattices , 2011 .

[20]  L. Feldman,et al.  Synthesis, Surface Studies, Composition and Structural Characterization of CdSe, Core/Shell, and Biologically Active Nanocrystals. , 2007, Surface science reports.

[21]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[22]  L. Lewis Chemical catalysis by colloids and clusters , 1993 .

[23]  L. Bursill,et al.  Electron microscope images of icosahedral and cuboctahedral (f.c.c. packing) clusters of atoms , 1985 .

[24]  Joysurya Basu,et al.  Bulk metallic glasses: A new class of engineering materials , 2003 .

[25]  A. Zeidler,et al.  Structure of eutectic liquids in the Au-Si, Au-Ge, and Ag-Ge binary systems by neutron diffraction , 2011 .

[26]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[27]  J. Miao,et al.  Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution , 2013, Nature.

[28]  A. Takeuchi,et al.  Recent development and application products of bulk glassy alloys , 2011 .

[29]  Simon J L Billinge,et al.  Understanding the formation and evolution of ceria nanoparticles under hydrothermal conditions. , 2012, Angewandte Chemie.

[30]  Z. H. Melgarejo,et al.  Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.

[31]  Andrey L Rogach,et al.  Nonspherical Noble Metal Nanoparticles: Colloid‐Chemical Synthesis and Morphology Control , 2010, Advanced materials.

[32]  A. Howie,et al.  Multiply-twinned particles in silver catalysts , 1979, Nature.

[33]  M. José-Yacamán,et al.  Low dimensional non-crystallographic metallic nanostructures: Hrtem simulation, models and experimental results , 2006 .

[34]  Karren L. More,et al.  Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces , 2014, Science.

[35]  J. Schroers,et al.  Nanomoulding with amorphous metals , 2009, Nature.

[36]  W. Johnson,et al.  A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 , 1993 .

[37]  W. Johnson,et al.  Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 alloy , 1995 .

[38]  Billinge,et al.  Polyhedral units and network connectivity in calcium aluminosilicate glasses from high-energy X-Ray diffraction , 2000, Physical review letters.

[39]  R L Sandstrom,et al.  Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. , 2000, Science.

[40]  L. Marks Experimental studies of small particle structures , 1994 .

[41]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[42]  V. Voloshin,et al.  On the origin of the splitting of the second maximum in the radial distribution function of amorphous solids , 1997 .

[43]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[44]  W. L. Johnson,et al.  A highly processable metallic glass: Zr[sub 41. 2]Ti[sub 13. 8]Cu[sub 12. 5]Ni[sub 10. 0]Be[sub 22. 5] , 1993 .

[45]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[46]  Anatoly I. Frenkel,et al.  Solving the 3D structure of metal nanoparticles , 2007 .

[47]  Gang Wang,et al.  Super Plastic Bulk Metallic Glasses at Room Temperature , 2007, Science.

[48]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[49]  Wei Zhou,et al.  Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. , 2013, Nano letters.

[50]  N. Hwang,et al.  Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. , 2002, Physical Review Letters.

[51]  Younan Xia,et al.  A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. , 2007, Angewandte Chemie.

[52]  P. Salmon,et al.  Structure of glassy and liquid GeSe2 , 2003 .

[53]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[54]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[55]  A. Trapananti,et al.  Is there icosahedral ordering in liquid and undercooled metals? , 2003, Physical review letters.

[56]  P. Duwez Structure and Properties of Glassy Metals , 1976 .

[57]  V. P. Voloshin,et al.  Void space analysis of the structure of liquids , 2002 .

[58]  Jianbo Wu,et al.  Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. , 2012, Journal of the American Chemical Society.

[59]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[60]  R. Felici Surface X‐Ray Diffraction , 2012 .

[61]  Dmitri V Talapin,et al.  Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. , 2006, Journal of the American Chemical Society.

[62]  Christopher B. Murray,et al.  Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices , 2001 .

[63]  P. Fornasiero,et al.  Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3 , 2012, Science.

[64]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[65]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[66]  J. Lee,et al.  Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. , 2009, ACS nano.

[67]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[68]  E. Longo,et al.  Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals , 2013, Scientific Reports.

[69]  Bongjin Simon Mun,et al.  Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. , 2007, Nature materials.

[70]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[71]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[72]  Weihua Wang,et al.  Bulk metallic glasses , 2004 .

[73]  W. Johnson Fundamental Aspects of Bulk Metallic Glass Formation in Multicomponent Alloys , 1996 .

[74]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[75]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[76]  A. Ponce,et al.  Experimental evidence of icosahedral and decahedral packing in one-dimensional nanostructures. , 2011, ACS nano.

[77]  Zhaoping Lu,et al.  Atomic packing symmetry in the metallic liquid and glass states , 2011 .

[78]  James R. McBride,et al.  Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. , 2013, Physical chemistry chemical physics : PCCP.

[79]  G. Müller,et al.  Structural characterization of II-VI semiconductor nanoparticles , 2007 .

[80]  A Hirata,et al.  Geometric Frustration of Icosahedron in Metallic Glasses , 2013, Science.

[81]  P. Yang,et al.  Crystal Growth , 2004 .

[82]  G. Jackson,et al.  Pt-Cu core-shell and alloy nanoparticles for heterogeneous NO(x) reduction: anomalous stability and reactivity of a core-shell nanostructure. , 2005, Angewandte Chemie.

[83]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[84]  Christopher B. Murray,et al.  Colloidal synthesis of nanocrystals and nanocrystal superlattices , 2001, IBM J. Res. Dev..

[85]  T. Hyeon,et al.  Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions. , 2002, Journal of the American Chemical Society.

[86]  R. Seshadri,et al.  SYNTHESIS ROUTES FOR LARGE VOLUMES OF NANOPARTICLES , 2004 .

[87]  P. Entel,et al.  Formation of an icosahedral structure during crystallization of nickel nanoclusters , 2004 .

[88]  Christopher B. Murray,et al.  Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices. , 2002 .