Ultrastrong Magnon-Photon Coupling Achieved by Magnetic Films in Contact with Superconducting Resonators

Coherent coupling between spin wave excitations (magnons) and microwave photons in a cavity may disclose new paths to unconventional phenomena as well as for novel applications. Here, we present a systematic investigation on YIG (Yttrium Iron Garnet) films on top of coplanar waveguide resonators made of superconducting YBCO. We first show that spin wave excitations with frequency higher than the Kittel mode can be excited by putting in direct contact a 5~$\mu$m thick YIG film with the YBCO coplanar resonator (cavity frequency $\omega_c/2 \pi = 8.65$~GHz). With this configuration, we obtain very large values of the collective coupling strength $\lambda/2 \pi \approx 2$~GHz and cooperativity $C=5 \times 10^4$. Transmission spectra are analyzed by a modified Hopfield model for which we provide an exact solution that allows us to well reproduce spectra by introducing a limited number of free parameters. It turns out that the coupling of the dominant magnon mode with photons exceeds 0.2 times the cavity frequency, thus demonstrating the achievement of the ultrastrong coupling regime with this architecture. Our analysis also shows a vanishing contribution of the diamagnetic term which is a peculiarity of pure spin systems.

[1]  C. Ross,et al.  Large Anomalous Frequency Shift in Perpendicular Standing Spin Wave Modes in BiYIG Films Induced by Thin Metallic Overlayers. , 2023, Physical review letters.

[2]  J. Berakdar,et al.  Magnon-Fluxon Interaction in Coupled Superconductor/Ferromagnet Hybrid Periodic Structures , 2023, Physical Review Applied.

[3]  C.-M. Hu,et al.  Coherent Microwave Emission of Gain-Driven Polaritons. , 2023, Physical review letters.

[4]  M. Maksutoglu,et al.  Coupling Sub-nanoliter BDPA Organic Radical Spin Ensembles with YBCO Inverse Anapole Resonators , 2022, Applied Magnetic Resonance.

[5]  V. Castel,et al.  Strong to ultrastrong coherent coupling measurements in a YIG/cavity system at room temperature , 2022, Physical Review B.

[6]  Sergio Martinez-Losa del Rincon,et al.  Measuring the Magnon-Photon Coupling in Shaped Ferromagnets: Tuning of the Resonance Frequency , 2022, Physical Review Applied.

[7]  W. Kwok,et al.  Coherent Coupling of Two Remote Magnonic Resonators Mediated by Superconducting Circuits. , 2022, Physical review letters.

[8]  A. Serga,et al.  Advances in coherent magnonics , 2021, Nature Reviews Materials.

[9]  A. Ustinov,et al.  Approaching Deep-Strong On-Chip Photon-To-Magnon Coupling , 2021, Physical Review Applied.

[10]  Hong Tang,et al.  Cavity magnonics , 2021, Physics Reports.

[11]  M. Białek,et al.  Strong Coupling of Antiferromagnetic Resonance with Subterahertz Cavity Fields , 2021 .

[12]  A. Pires,et al.  Spin waves I , 2021 .

[13]  D. Zueco,et al.  Photon Condensation and Enhanced Magnetism in Cavity QED. , 2020, Physical review letters.

[14]  M. Weides,et al.  Ultrastrong photon-to-magnon coupling in multilayered heterostructures involving superconducting coherence via ferromagnetic layers , 2020, Science Advances.

[15]  Yanxue Chen,et al.  Magnetization coupling in a YIG/GGG structure , 2020 .

[16]  G. Schmidt,et al.  Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates , 2020, 2008.09390.

[17]  M. Weides,et al.  Electromagnetic Approach to Cavity Spintronics , 2020, 2007.11483.

[18]  W. Kwok,et al.  Hybrid magnonics: Physics, circuits, and applications for coherent information processing , 2020, Journal of Applied Physics.

[19]  V. Giovannetti,et al.  Theory of photon condensation in a spatially varying electromagnetic field , 2020, 2005.09088.

[20]  F. Nori,et al.  Gauge invariance of the Dicke and Hopfield models , 2020, Physical Review A.

[21]  N. Lambert,et al.  Ultrastrong coupling between a microwave resonator and antiferromagnetic resonances of rare-earth ion spins , 2019, Physical Review B.

[22]  O. Moze,et al.  Coupling Nanostructured CsNiCr Prussian Blue Analogue to Resonant Microwave Fields , 2019, Advanced Quantum Technologies.

[23]  M. Tobar,et al.  Experimental implementations of cavity-magnon systems: from ultra strong coupling to applications in precision measurement , 2019, New Journal of Physics.

[24]  H. Huebl,et al.  Exchange-Enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet. , 2019, Physical review letters.

[25]  A. V. van Loo,et al.  Microwave magnon damping in YIG films at millikelvin temperatures , 2019, APL Materials.

[26]  Luqiao Liu,et al.  Strong Coupling between Microwave Photons and Nanomagnet Magnons. , 2019, Physical review letters.

[27]  Yasunobu Nakamura,et al.  Hybrid quantum systems based on magnonics , 2019, Applied Physics Express.

[28]  A. Ustinov,et al.  Modified dispersion law for spin waves coupled to a superconductor , 2018, Journal of Applied Physics.

[29]  Franco Nori,et al.  Ultrastrong coupling between light and matter , 2018, Nature Reviews Physics.

[30]  A. Ustinov,et al.  Ferromagnet/Superconductor Hybridization for Magnonic Applications , 2018, Advanced Functional Materials.

[31]  S. Pagano,et al.  Operation of a ferromagnetic axion haloscope at ma=58μeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_a=58\,\upmu , 2018, The European Physical Journal C.

[32]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[33]  A. Georges,et al.  Superradiant Quantum Materials. , 2018, Physical review letters.

[34]  A. Serga,et al.  Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films , 2017, Physical Review B.

[35]  Y. P. Chen,et al.  Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton. , 2017, Physical review letters.

[36]  H. Huebl,et al.  Temperature-dependent magnetic damping of yttrium iron garnet spheres , 2017, 1703.09444.

[37]  R. Morris,et al.  Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit , 2016, Scientific Reports.

[38]  M. Affronte,et al.  Coherently coupling distinct spin ensembles through a high-T c superconducting resonator , 2016, 1605.02879.

[39]  Yasunobu Nakamura,et al.  Bidirectional conversion between microwave and light via ferromagnetic magnons , 2016, 1601.03908.

[40]  H. Tang,et al.  Superstrong coupling of thin film magnetostatic waves with microwave cavity , 2016 .

[41]  M. Tobar,et al.  Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere , 2015, 1512.07773.

[42]  H. Yuan,et al.  Dynamic magnetic susceptibility and electrical detection of ferromagnetic resonance , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[43]  Michael E. Tobar,et al.  Superstrong coupling of a microwave cavity to yttrium iron garnet magnons , 2015, 1508.04967.

[44]  H. Tang,et al.  Magnon dark modes and gradient memory , 2015, Nature Communications.

[45]  Ivan S. Maksymov,et al.  Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures , 2015 .

[46]  M. Affronte,et al.  YBa2Cu3O7 microwave resonators for strong collective coupling with spin ensembles , 2015, 1503.06145.

[47]  G. Bauer,et al.  Magnetic spheres in microwave cavities , 2015, 1503.02419.

[48]  Michael E. Tobar,et al.  High Cooperativity Cavity QED with Magnons at Microwave Frequencies , 2014, 1408.2905.

[49]  H. Huebl,et al.  Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si , 2014, 1405.1231.

[50]  F. Hocke,et al.  High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. , 2012, Physical review letters.

[51]  A. Auffeves,et al.  Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories , 2011, 1101.1842.

[52]  W. Oliver,et al.  Study of loss in superconducting coplanar waveguide resonators , 2010, 1010.6063.

[53]  C. Ciuti,et al.  No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. , 2010, Nature communications.

[54]  M. Flatté,et al.  Strong field interactions between a nanomagnet and a photonic cavity. , 2010, Physical review letters.

[55]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[56]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[57]  M. Kostylev,et al.  Calculation of spin wave mode response induced by a coplanar microwave line , 2007 .

[58]  M. Kostylev,et al.  Spin-wave excitations in finite rectangular elements , 2005, INTERMAG Asia 2005. Digests of the IEEE International Magnetics Conference, 2005..

[59]  G. Dionne,et al.  Tunable YBCO resonators on YIG substrates , 1997, IEEE Transactions on Applied Superconductivity.

[60]  S. Yoshida,et al.  Propagation characteristics of the magnetostatic surface wave in the YBCO-YIG film-layered structure , 1996 .

[61]  V. Danilov,et al.  Low-temperature ferromagnetic resonance in epitaxial garnet films on paramagnetic substrates , 1989 .

[62]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[63]  C Gough,et al.  Introduction to Solid State Physics (6th edn) , 1986 .

[64]  T. W. O’Keeffe,et al.  Magnetostatic surface‐wave propagation in finite samples , 1978 .

[65]  S. R. Seshadri,et al.  Surface magnetostatic modes of a ferrite slab , 1970 .

[66]  A R Plummer Introduction to Solid State Physics , 1967 .

[67]  B. Auld Coupling of Electromagnetic and Magnetostatic Modes in Ferrite‐Loaded Cavity Resonators , 1963 .

[68]  B. Auld,et al.  Magnetodynamic Mode Ferrite Amplifier , 1962 .

[69]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .

[70]  J. Artman,et al.  Measurement of Permeability Tensor in Ferrites , 1953 .

[71]  D. Polder,et al.  On the theory of ferromagnetic resonance , 1949 .

[72]  C. Kittel On the Theory of Ferromagnetic Resonance Absorption , 1948 .

[73]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[74]  W. Porod,et al.  Complex Permittivity of Gadolinium Gallium Garnet From 8.2 to 12.4 GHz , 2021, IEEE Magnetics Letters.

[75]  S. Pagano,et al.  Operation of a Ferromagnetic Axion Haloscope , 2020 .

[76]  A. Donald,et al.  Supplemental Material to , 2013 .

[77]  W. Marsden I and J , 2012 .

[78]  Regular Article THE EUROPEAN PHYSICAL JOURNAL B , 2010 .

[79]  Burkard Hillebrands,et al.  Spin Dynamics in Confined Magnetic Structures III , 2002 .

[80]  D. Polder,et al.  VIII. On the theory of ferromagnetic resonance , 1949 .