Stability analysis of neural-network interconnected systems

This paper is concerned with the stability problem of a neural-network (NN) interconnected system which consists of a set of NN models. First, a linear difference inclusion (LDI) state-space representation is established for the dynamics of each NN model. Subsequently, based on the LDI state-space representation, a stability criterion in terms of Lyapunov's direct method is derived to guarantee the asymptotic stability of NN interconnected systems. Finally, a numerical example with simulations is given to demonstrate the results.