Particle swarm optimizers for Pareto optimization with enhanced archiving techniques

During the last decade, numerous heuristic search methods for solving multi-objective optimization problems have been developed. Population oriented approaches such as evolutionary algorithms and particle swarm optimization can be distinguished into the class of archive-based algorithms and algorithms without archive. While the latter may lose the best solutions found so far, archive based algorithms keep track of these solutions. In this article, a new particle swarm optimization technique, called DOPS, for multi-objective optimization problems is proposed. DOPS integrates well-known archiving techniques from evolutionary algorithms into particle swarm optimization. Modifications and extensions of the archiving techniques are empirically analyzed and several test functions are used to illustrate the usability of the proposed approach. A statistical analysis of the obtained results is presented. The article concludes with a discussion of the obtained results as well as ideas for further research.

[1]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[2]  Marco Laumanns,et al.  Scalable test problems for evolutionary multi-objective optimization , 2001 .

[3]  K. Schmitt,et al.  Evolutionary Optimization of Mold Temperature Control Strategies Encoding and Solving the Multi-Objective Problem with Standard ES and KEA , 2003 .

[4]  Thomas Bartz-Beielstein,et al.  KEA - a software package for development, analysis and application of multiple objective evolutio , 2006 .

[5]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[6]  Michael N. Vrahatis,et al.  Particle swarm optimization for minimax problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[8]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[10]  Yaochu Jin,et al.  Dynamic Weighted Aggregation for evolutionary multi-objective optimization: why does it work and how? , 2001 .

[11]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[12]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[13]  A. Cockshott,et al.  Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization , 2001 .

[14]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[15]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[18]  Michael N. Vrahatis,et al.  Tuning PSO Parameters Through Sensitivity Analysis , 2002 .

[19]  Michael N. Vrahatis,et al.  Particle Swarm Optimization Method for Constrained Optimization Problems , 2002 .

[20]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[21]  Xiao-Feng Xie,et al.  Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[22]  Michael N. Vrahatis,et al.  Particle swarm optimization for integer programming , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  Marco Laumanns,et al.  Archiving With Guaranteed Convergence And Diversity In Multi-objective Optimization , 2002, GECCO.

[24]  Thomas Beielstein Tuning Evolutionary Algorithms , 2003 .

[25]  Russell C. Eberhart,et al.  Particle swarm with extended memory for multiobjective optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[26]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[27]  V. Scherman,et al.  Conference Papers , 2018, The Dostoevsky Journal.

[28]  Günter Rudolph,et al.  Convergence properties of some multi-objective evolutionary algorithms , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[29]  C. Coello,et al.  Improving PSO-based Multi-Objective Optimization using Crowding , Mutation and �-Dominance , 2005 .

[30]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[31]  Mark Persoff UK , 1999, EC Tax Review.

[32]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[33]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[34]  M. N. Vrahatis,et al.  Particle swarm optimization method in multiobjective problems , 2002, SAC '02.

[35]  Marco Laumanns,et al.  Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.

[36]  C. E. Rogers,et al.  Symbolic Description of Factorial Models for Analysis of Variance , 1973 .

[37]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[38]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[39]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[40]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[41]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[42]  Gary B. Lamont,et al.  Considerations in engineering parallel multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[43]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[44]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[45]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[46]  William M. Spears,et al.  The role of mutation and recombination in evolutionary algorithms , 1998 .