Modelling of Microstructure and its Evolution in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi

A continuum-mechanical description of the stored energy in shape-memory alloys is presented, with its multi-well character giving rise to a microstructure described, with a certain approximation, by special gradient Young measures. A rate-independent phenomenological dissipation is then considered to model a hysteretic response. Isothermal simulations with CuAlNi single crystal are presented.

[1]  M. Frémond,et al.  Non-Smooth Thermomechanics , 2001 .

[2]  Klaus Hackl,et al.  On the Calculation of Microstructures for Inelastic Materials using Relaxed Energies , 2003 .

[3]  P. Pedregal Parametrized measures and variational principles , 1997 .

[4]  Richard D. James,et al.  Martensitic transformations and shape-memory materials ☆ , 2000 .

[5]  Kaushik Bhattacharya,et al.  Mobility of twin and phase boundaries , 2003 .

[6]  C. Lexcellent,et al.  Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals , 1998 .

[7]  E. Patoor,et al.  Thermomechanical behaviour of shape memory alloys , 1988 .

[8]  Jacob Lubliner,et al.  A maximum-dissipation principle in generalized plasticity , 1984 .

[9]  B. D. Reddy,et al.  An internal variable theory of elastoplasticity based on the maximum plastic work inequality , 1990 .

[10]  Michel Frémond,et al.  Shape Memory Alloys , 1996 .

[11]  T Prakash G. Thamburaja,et al.  Thermo-mechanically coupled superelastic response of initially-textured Ti-Ni sheet , 2003 .

[12]  Alexander Mielke,et al.  Evolution of Rate{Independent Inelasticity with Microstructure using Relaxation and Young Measures , 2003 .

[13]  L. Brinson,et al.  The variant selection criteria in single-crystal CuAlNi shape memory alloys , 2000 .

[14]  Jan Kristensen,et al.  On the non-locality of quasiconvexity , 1999 .

[15]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[16]  J. Ball,et al.  Hysteresis During Stress-Induced Variant Rearrangement , 1995 .

[17]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[18]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[19]  V. Sverák,et al.  Rank-one convexity does not imply quasiconvexity , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Alexander Mielke,et al.  Energetic formulation of multiplicative elasto-plasticity using dissipation distances , 2003 .

[21]  Mitchell Luskin,et al.  The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation , 1999 .

[22]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[23]  Coherent Bremsstrahlung and the Quantum Theory of Measurement , 1995 .

[24]  S. Müller Variational models for microstructure and phase transitions , 1999 .

[25]  Lev Truskinovsky,et al.  Discretization and hysteresis , 1997 .

[26]  Tomáš Roubíček,et al.  Visco‐elasto‐plastic model for martensitic phase transformation in shape‐memory alloys , 2002 .

[27]  Alexander Mielke,et al.  Existence results for energetic models for rate-independent systems , 2005 .

[28]  Richard D. James,et al.  Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory alloy , 1996 .

[29]  Shuichi Miyazaki,et al.  Deformation behaviour associated with the stress-induced martensitic transformation in Ti–Ni thin films and their thermodynamical modelling , 1998 .

[30]  Rodney Hill,et al.  A VARIATIONAL PRINCIPLE OF MAXIMUM PLASTIC WORK IN CLASSICAL PLASTICITY , 1948 .

[31]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[32]  Garrett J. Hall,et al.  Application of the Relaxed Free Energy of Mixing to Problems in Shape Memory Alloy Simulation , 2002 .

[33]  U. Bonn,et al.  Upscaling from Atomistic Models to Higher Order Gradient Continuum Models for Crystalline Solids , 2005 .

[34]  Christian Miehe,et al.  A multi-variant martensitic phase transformation model: formulation and numerical implementation , 2001 .

[35]  Michael Griebel,et al.  Martensitic transformation in NiMnGa single crystals: Numerical simulation and experiments , 2006 .

[36]  Tomáš Roubíček,et al.  Dissipative Evolution of Microstructure in Shape Memory Alloys , 2000 .

[37]  Sanjay Govindjee,et al.  The free energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis , 2003 .

[38]  Stanisław Stupkiewicz,et al.  Modelling of laminated microstructures in stress-induced martensitic transformations , 2002 .

[39]  J. K. Knowles,et al.  On the Propagation of Maximally Dissipative Phase Boundaries in Solids , 1992 .

[40]  R. A. Nicolaides,et al.  Computation of Microstructure Utilizing Young Measure Representations , 1993 .

[41]  E. N. Mamiya,et al.  Three-dimensional model for solids undergoing stress-induced phase transformations , 1998 .

[42]  F. Falk,et al.  Three-Dimensional Landau Theory Describing the Martensitic Phase Transformation of Shape-Memory Alloys , 1990 .

[43]  V. Levitas The postulate of realizability: Formulation and applications to the post-bifurcation behaviour and phase transitions in elastoplastic materials-II , 1995 .

[44]  Ferdinando Auricchio,et al.  Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior , 1997 .

[45]  M. Šilhavý On the Hysteresis in Martensitic Transformations , 2003 .

[46]  Michal Landa,et al.  Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy , 2005 .

[47]  Alexander Mielke,et al.  A Rate-Independent Model for Inelastic Behavior of Shape-Memory Alloys , 2003, Multiscale Model. Simul..

[48]  Richard D. James,et al.  A Way to Search for Multiferroic Materials with “Unlikely” Combinations of Physical Properties , 2005 .

[49]  Lev T Ruskinovsky Transition to Detonation in Dynamic Phase Changes , 2004 .

[50]  Sylvie Aubry,et al.  A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials , 2003 .

[51]  Tomáš Roubíček,et al.  Evolution model for martensitic phase transformation in shape-memory alloys , 2002 .

[52]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[53]  P. Rosakis,et al.  Hysteresis and Stick-Slip Motion of Phase Boundaries in Dynamic Models of Phase Transitions , 1999 .

[54]  Ingo Müller,et al.  The Interior of the Pseudoelastic Hysteresis , 1991 .

[55]  Mitchell Luskin,et al.  The Computation of Martensitic Microstructure with Piecewise Laminates , 2003, J. Sci. Comput..

[56]  Kengo Hashimoto,et al.  Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube , 2003 .

[57]  Philip Holmes,et al.  On the dynamics of fine structure , 1991 .

[58]  K. Shimizu,et al.  Morphology and Crystallography of Thermoelastic γ' Cu-Al-Ni Martensite , 1969 .

[59]  A. Mielke,et al.  On rate-independent hysteresis models , 2004 .

[60]  S. Kojima,et al.  Measurement of elastic constants , 1983 .

[61]  Huibin Xu,et al.  On the pseudo-elastic hysteresis , 1991 .

[62]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[63]  K. Bhattacharya,et al.  Uniqueness and stability of the simply laminated microstructure for martensitic crystals that undergo a cubic to orthorhombic phase transformation , 1998 .

[64]  T. Roubíček Models of Microstructure Evolution in Shape Memory Alloys , 2004 .

[65]  G. Goldsztein The effective energy and laminated microstructures in martensitic phase transformations , 2001 .

[66]  Xiaofeng Ren,et al.  Finite Scale Microstructures in Nonlocal Elasticity , 2000 .

[67]  御子柴宣夫 B. A. Auld : Acoustic Fields and Waves in Solids, Vol. 1 and 2, John Wiley, New York and London, 1973, 2 vols., 23.5×16cm. , 1974 .

[68]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[69]  V. Novák,et al.  On the anisotropy of martensitic transformations in Cu-based alloys , 1999 .

[70]  Arun R. Srinivasa,et al.  On the inelastic behavior of solids — Part 1: Twinning , 1995 .

[71]  Zhang Xiangyang,et al.  A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys , 2000 .

[72]  Alexander Mielke,et al.  Chapter 6 – Evolution of Rate-Independent Systems , 2005 .

[73]  Ingo Müller,et al.  Nonequilibrium thermodynamics of pseudoelasticity , 1993 .

[74]  K. Rajagopal,et al.  On the effect of dissipation in shape-memory alloys , 2003 .

[75]  Martin Kruzík,et al.  Numerical Approach to Double Well Problems , 1998 .

[76]  T. Roubíček A note on an interaction between penalization and discretization , 1991 .

[77]  M. Suezawa,et al.  Behaviour of elastic constants in CuAlNi alloy in the close vicinity of Ms-point , 1976 .

[78]  M. Pitteri,et al.  Continuum Models for Phase Transitions and Twinning in Crystals , 2002 .

[79]  K. Wilmanski Symmetric model of stress-strain hysteresis loops in shape memory alloys , 1993 .

[80]  M. Duggin,et al.  The nature of the martensite transformation in a coppernickel-aluminium alloy , 1964 .

[81]  M. Kružík Mesoscopic model of microstructure evolution in shape memory alloys with applications to NiMnGa , 2004 .

[82]  F. Auricchio,et al.  A three‐dimensional model describing stress‐temperature induced solid phase transformations: solution algorithm and boundary value problems , 2004 .

[83]  M. Kružík,et al.  Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation , 2006 .