Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA)

We derive an implicit-explicit (IMEX) formalism for the three-dimensional (3D) Euler equations that allow a unified representation of various nonhydrostatic flow regimes, including cloud resolving and mesoscale (flow in a 3D Cartesian domain) as well as global regimes (flow in spherical geometries). This general IMEX formalism admits numerous types of methods including single-stage multistep methods (e.g., Adams methods and backward difference formulas) and multistage single-step methods (e.g., additive Runge--Kutta methods). The significance of this result is that it allows a numerical model to reuse the same machinery for all classes of time-integration methods described in this work. We also derive two classes of IMEX methods, one-dimensional and 3D, and show that they achieve their expected theoretical rates of convergence regardless of the geometry (e.g., 3D box or sphere) and introduce a new second-order IMEX Runge--Kutta method that performs better than the other second-order methods considered. We...

[1]  Mariano Vázquez,et al.  Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation , 2012, J. Comput. Phys..

[2]  Francis X. Giraldo,et al.  Semi‐implicit time‐integrators for a scalable spectral element atmospheric model , 2005 .

[3]  Jan S. Hesthaven,et al.  Idempotent filtering in spectral and spectral element methods , 2006, J. Comput. Phys..

[4]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[5]  Francis X. Giraldo,et al.  Klein-Gordon equation with advection on unbounded domains using spectral elements and high-order non-reflecting boundary conditions , 2010, Appl. Math. Comput..

[6]  Francis X. Giraldo,et al.  A Spectral Element Solution of the Klein-Gordon Equation with High-Order Treatment of Time and Non-Reflecting Boundary , 2010 .

[7]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[8]  P. Rentrop,et al.  Multirate Partitioned Runge-Kutta Methods , 2001 .

[9]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[10]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[11]  Christiane Jablonowski,et al.  Operator-Split Runge-Kutta-Rosenbrock Methods for Nonhydrostatic Atmospheric Models , 2012 .

[12]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[13]  Francis X. Giraldo,et al.  High‐order semi‐implicit time‐integrators for a triangular discontinuous Galerkin oceanic shallow water model , 2009 .

[14]  Francis X. Giraldo,et al.  Dry and moist idealized experiments with a two-dimensional spectral element model , 2012 .

[15]  Piotr K. Smolarkiewicz,et al.  Spectral Preconditioners for Nonhydrostatic Atmospheric Models , 2003 .

[16]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[17]  John C. Butcher,et al.  A new type of singly-implicit Runge-Kutta method , 2000 .

[18]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[19]  G. Russo,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2005 .

[20]  John R. Dea,et al.  High-Order Non-Reflecting Boundary Conditions for the Linearized 2-D Euler Equations: No Mean Flow Case , 2009 .

[21]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[22]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[23]  P. Strevens Iii , 1985 .

[24]  Mark A. Taylor,et al.  The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics , 2004 .

[25]  Francis X. Giraldo,et al.  Hybrid Eulerian-Lagrangian Semi-Implicit Time-Integrators , 2006, Comput. Math. Appl..

[26]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[27]  Dale R. Durran,et al.  Implicit–Explicit Multistep Methods for Fast-Wave–Slow-Wave Problems , 2012 .

[28]  L. E. Carr,et al.  An Element-Based Spectrally Optimized Approximate Inverse Preconditioner for the Euler Equations , 2012, SIAM J. Sci. Comput..

[29]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[30]  Stig Skelboe,et al.  Stability properties of backward differentiation multirate formulas , 1989 .

[31]  Francis X. Giraldo,et al.  Semi-Implicit Formulations of the Navier--Stokes Equations: Application to Nonhydrostatic Atmospheric Modeling , 2010, SIAM J. Sci. Comput..

[32]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[33]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[34]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[35]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..