A multiphase level-set approach for all-Mach numbers
暂无分享,去创建一个
[1] V. Semenenko. Artificial Supercavitation. Physics and Calculation , 2001 .
[2] Rémi Abgrall,et al. Computations of compressible multifluids , 2001 .
[3] D. R. Stinebring,et al. A preconditioned Navier–Stokes method for two-phase flows with application to cavitation prediction , 2000 .
[4] Smadar Karni,et al. Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .
[5] S. Osher,et al. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .
[6] Heinz Pitsch,et al. An accurate conservative level set/ghost fluid method for simulating turbulent atomization , 2008, J. Comput. Phys..
[7] R. Kunz,et al. A Level-Set Approach for Compressible, Multiphase Fluid Flows with Mass Transfer , 2009 .
[8] M. Strelets. Detached eddy simulation of massively separated flows , 2001 .
[9] D. R. Stinebring,et al. High Reynolds Number, Unsteady, Multiphase CFD Modeling of Cavitating Flows , 2002 .
[10] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[11] J. Edwards. A low-diffusion flux-splitting scheme for Navier-Stokes calculations , 1997 .
[12] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[13] Kenneth E. Jansen,et al. Hydrodynamic simulation of air bubble implosion using a level set approach , 2006, J. Comput. Phys..
[14] Robert F. Kunz,et al. UNSTEADY RANS AND DETACHED EDDY SIMULATIONS OF CAVITATING FLOW OVER A HYDROFOIL , 2003 .
[15] Emilio F. Campana,et al. Free-surface fluctuations behind microbreakers: space–time behaviour and subsurface flow field , 2005, Journal of Fluid Mechanics.
[16] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[17] J. Sethian,et al. LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .
[18] Meng-Sing Liou,et al. A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..
[19] G. Kreiss,et al. A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.
[20] Vineet Ahuja,et al. Numerical Study of Cavitation in Cryogenic Fluids , 2005 .
[21] Rémi Abgrall,et al. Ghost-Fluids for the Poor: A Single Fluid Algorithm for Multifluids , 2001 .
[22] M. Wosnik,et al. EXPERIMENTAL STUDY OF A VENTILATED SUPERCAVITATING VEHICLE , 2003 .
[23] S. Osher,et al. Computing interface motion in compressible gas dynamics , 1992 .
[24] C. Merkle,et al. Computation of Multiphase Mixture Flows with Compressibility Effects , 2002 .
[25] Charbel Farhat,et al. A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..
[26] Smadar Karni,et al. Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..
[27] Vineet Ahuja,et al. Simulations of cavitating flows using hybrid unstructured meshes , 2001 .
[28] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .
[29] Michael P. Kinzel. Computational techniques and analysis of cavitating-fluid flows , 2008 .
[30] Mark Sussman,et al. The Numerical Simulation of Ship Waves using Cartesian Grid Methods , 2014, 1410.1952.
[31] Feng Xiao,et al. A simple algebraic interface capturing scheme using hyperbolic tangent function , 2005 .
[32] Meng-Sing Liou,et al. Numerical prediction of interfacial instabilities: Sharp interface method (SIM) , 2008, J. Comput. Phys..