SLAM in O(log n) with the Combined Kalman - Information filter

In this paper we show that SLAM can be executed in as low as O(log n) per step. Our algorithm, the Combined Filter SLAM, uses a combination of Extended Kalman and Extended Information filters in such a way that the total cost of building a map can be reduced to O(n log n), as compared with O(n3) for standard EKF SLAM, and O(n2) for Divide and Conquer (D&C) SLAM and the Sparse Local Submap Joining Filter (SLSJF). We discuss the computational improvements that have been proposed for Kalman and Information filters, discuss the advantages and limitations of each, and how a judicious combination results in the possibility of reducing the computational cost per step to O(log n).We use simulations and real datasets to show the advantages of the proposed algorithm.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[3]  Frank Dellaert,et al.  Multi-level submap based SLAM using nested dissection , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  G. Dissanayake,et al.  Iterated SLSJF: A sparse local submap joining algorithm with improved consistency , 2008 .

[5]  Thomas B. Schön,et al.  Particle Filter SLAM with High Dimensional Vehicle Model , 2009, J. Intell. Robotic Syst..

[6]  Stefan B. Williams,et al.  An efficient approach to the simultaneous localisation and mapping problem , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  José Neira,et al.  SLAM in O(log n) with the Combined Kalman-Information Filter , 2010, Robotics Auton. Syst..

[8]  A.G.O. Mutambara,et al.  State and information space estimation: a comparison , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[9]  Lina María Paz,et al.  Divide and Conquer: EKF SLAM in O(n) , 2008, IEEE Trans. Robotics.

[10]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[11]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[12]  Wolfram Burgard,et al.  Fast and accurate SLAM with Rao-Blackwellized particle filters , 2007, Robotics Auton. Syst..

[13]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[14]  Juan D. Tardós,et al.  Hierarchical SLAM: real-time accurate mapping of large environments , 2005, IEEE Transactions on Robotics.

[15]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[16]  Hugh F. Durrant-Whyte,et al.  CRF-Matching: Conditional Random Fields for Feature-Based Scan Matching , 2007, Robotics: Science and Systems.

[17]  J. Leonard,et al.  Decoupled Stochastic Mapping , 2001 .

[18]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[19]  Fabio Tozeto Ramos,et al.  Efficient Large Scale SLAM Including Data Association using the Combined Filter , 2009, ECMR.

[20]  Matthew R. Walter,et al.  Sparse extended information filters: insights into sparsification , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Gamini Dissanayake,et al.  Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM , 2007, IEEE Transactions on Robotics.

[22]  Udo Frese,et al.  Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping , 2006, Auton. Robots.

[23]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[25]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[26]  Sebastian Thrun,et al.  Particle Filters in Robotics , 2002, UAI.

[27]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[28]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[29]  S. Sukkarieh,et al.  Observability analysis and active control for airborne SLAM , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[30]  John J. Leonard,et al.  Decoupled stochastic mapping [for mobile robot & AUV navigation] , 2001 .

[31]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters for View-Based SLAM , 2006, IEEE Transactions on Robotics.

[32]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[33]  Michael Bosse,et al.  Simultaneous Localization and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework , 2004, Int. J. Robotics Res..

[34]  Ronald Parr,et al.  DP-SLAM 2.0 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[35]  Wolfram Burgard,et al.  Online constraint network optimization for efficient maximum likelihood map learning , 2008, 2008 IEEE International Conference on Robotics and Automation.

[36]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[37]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[38]  Frank Dellaert,et al.  Tectonic SAM: Exact, Out-of-Core, Submap-Based SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[39]  P. Newman,et al.  SLAM in large-scale cyclic environments using the Atlas framework , 2003 .

[40]  Edwin Olson Implicit Data Association from Spectrally Clustered Local Matches , 2008 .

[41]  Gamini Dissanayake,et al.  Sparse Local Submap Joining Filter for Building Large-Scale Maps , 2008, IEEE Transactions on Robotics.

[42]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..