Using matching, instrumental variables and control functions to estimate economic choice models

This paper investigates four topics. (1) It examines the different roles played by the propensity score (probability of selection) in matching, instrumental variable and control functions methods. (2) It contrasts the roles of exclusion restrictions in matching and selection models. (3) It characterizes the sensitivity of matching to the choice of conditioning variables and demonstrates the greater robustness of control function methods to misspecification of the conditioning variables. (4) It demonstrates the problem of choosing the conditioning variables in matching and the failure of conventional model selection criteria when candidate conditioning variables are not exogenous.

[1]  James J. Heckman,et al.  Life Cycle Schooling and Dynamic Selection Bias: Models and Evidence for Five Cohorts of American Males , 1998, Journal of Political Economy.

[2]  James J. Heckman,et al.  The relationship between treatment parameters within a latent variable framework , 2000 .

[3]  Songnian Chen Distribution-free estimation of the random coefficient dummy endogenous variable model , 1999 .

[4]  R. Lalonde Evaluating the Econometric Evaluations of Training Programs with Experimental Data , 1984 .

[5]  J J Heckman,et al.  Local instrumental variables and latent variable models for identifying and bounding treatment effects. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Heckman Instrumental Variables: A Study of Implicit Behavioral Assumptions Used in Making Program Evaluations. , 1997 .

[7]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme , 1997 .

[8]  John Yinger,et al.  Does School District Consolidation Cut Costs? , 2001 .

[9]  Donald W. K. Andrews,et al.  Semiparametric Estimation of the Intercept of a Sample Selection Model , 1998 .

[10]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[11]  Myoung-jae Lee,et al.  QUADRATIC MODE REGRESSION , 1993 .

[12]  J. Heckman,et al.  Longitudinal Analysis of Labor Market Data: Alternative methods for evaluating the impact of interventions , 1985 .

[13]  M. Sobel Discussion: ‘The Scientific Model of Causality’ , 2005 .

[14]  Petra E. Todd,et al.  Matching As An Econometric Evaluation Estimator , 1998 .

[15]  M. Lechner,et al.  A Microeconometric Evaluation of Active Labor Market Policy in Switzerland , 2001 .

[16]  James J. Heckman,et al.  Four Parameters of Interest in the Evaluation of Social Programs , 2001 .

[17]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[18]  Alberto Abadie Semiparametric Difference-in-Differences Estimators , 2005 .

[19]  G. Imbens,et al.  Bias-Corrected Matching Estimators for Average Treatment Effects , 2011 .

[20]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[21]  H. James VARIETIES OF SELECTION BIAS , 1990 .

[22]  T. Andrén,et al.  Assessing the employment effects of vocational training using a one-factor model , 2006 .

[23]  Jeffrey A. Smith,et al.  Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators? , 2000 .

[24]  J. Heckman Rejoinder: Response to Sobel , 2005 .

[25]  Petra E. Todd,et al.  Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods , 2001 .

[26]  J. Heckman Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture , 2001, Journal of Political Economy.

[27]  D. Rubin,et al.  Reducing Bias in Observational Studies Using Subclassification on the Propensity Score , 1984 .

[28]  A. Pakes,et al.  The Dynamics of Productivity in the Telecommunications Equipment Industry , 1992 .

[29]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1995 .

[30]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .

[31]  James M. Robins,et al.  Causal inference for complex longitudinal data: the continuous case , 2001 .

[32]  J. Heckman,et al.  Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice , 2003, SSRN Electronic Journal.

[33]  G. Imbens The Role of the Propensity Score in Estimating Dose-Response Functions , 1999 .

[34]  E. Vytlacil Independence, Monotonicity, and Latent Index Models: An Equivalence Result , 2002 .

[35]  P. Davies,et al.  Local Extremes, Runs, Strings and Multiresolution , 2001 .

[36]  M. Lechner Identification and Estimation of Causal Effects of Multiple Treatments Under the Conditional Independence Assumption , 1999, SSRN Electronic Journal.

[37]  P. Rosenbaum Model-Based Direct Adjustment , 1987 .

[38]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[39]  A. Prakash,et al.  Covenants with weak swords: ISO 14001 and facilities' environmental performance , 2005 .

[40]  Donald B. Rubin,et al.  Characterizing the effect of matching using linear propensity score methods with normal distributions , 1992 .

[41]  James J. Heckman,et al.  Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs , 2005 .

[42]  Richard Harris,et al.  Economics of the Workplace: Special Issue Editorial , 2005 .

[43]  James J. Heckman,et al.  1. The Scientific Model of Causality , 2005 .

[44]  James J. Heckman,et al.  Choosing Among Alternative Nonexperimental Methods for Estimating the Impact of Social Programs: the Case of Manpower Training , 1989 .

[45]  James J. Heckman,et al.  Randomization and Social Policy Evaluation , 1991 .

[46]  J. Heckman Dummy Endogenous Variables in a Simultaneous Equation System , 1977 .

[47]  Wim P. M. Vijverberg,et al.  Measuring the unidentified parameter of the extended Roy model of selectivity , 1993 .

[48]  R. Sparrow Protecting Education for the Poor in Times of Crisis: An Evaluation of a Scholarship Programme in Indonesia , 2004 .

[49]  J. Heckman,et al.  Removing the Veil of Ignorance in Assessing the Distributional Impacts of Social Policies , 2002, SSRN Electronic Journal.

[50]  Edward Vytlacil,et al.  Local Instrumental Variables , 2000 .

[51]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[52]  Robert A. Moffitt,et al.  The Estimation of Wage Gains and Welfare Gains in Self-selection , 1987 .

[53]  James J. Heckman,et al.  Alternative methods for solving the problem of selection bias in evaluating the impact of treatments , 1986 .

[54]  P. Veazie,et al.  Another look at observational studies in rehabilitation research: going beyond the holy grail of the randomized controlled trial. , 2005, Archives of physical medicine and rehabilitation.