Effects of substrate surface polarity on heteroepitaxial growth of pseudobinary ZnO–InN alloy films on ZnO substrates

(ZnO)_ X (InN)_1- X films have been epitaxially grown on 0.9%-lattice-mismatched ZnO substrates at 450 °C by sputtering. Films fabricated on O-polar substrates exhibit higher crystal quality and smoother surface. The full width at half-maximum of (0002) rocking curve and the root-mean-square roughness ( R _q) of a 30-nm-thick film on O-polar surface are 0.21° and 2.71 nm, respectively, whereas those on Zn-polar one are 0.32° and 4.30 nm, respectively. R _q on O-polar surface further decreases to 0.73 nm as the thickness decreases to 10 nm, where we successfully obtained atomically flat single-crystalline films having atomically sharp interface with the substrates. High-resolution transmission electron microscopy revealed the Stranski–Krastanov (layer plus island) growth for O-polar case and just 3D islanding mode growth for Zn-polar one. All the results indicate the much longer migration length of adatoms on O-polar surface during the film growth, enabling adatoms to reach their thermodynamically favored positions even at low substrate temperature. Graphical abstract

[1]  K. Koga,et al.  Growth of Single-Crystalline ZnO Films on 18%-Lattice-Mismatched Sapphire Substrates Using Buffer Layers with Three-Dimensional Islands , 2022, Crystal Growth & Design.

[2]  D. Yamashita,et al.  Impact of surface morphologies of substrates on the epitaxial growth of magnetron-sputtered (ZnO)x(InN)1-x films , 2020, Japanese Journal of Applied Physics.

[3]  M. Hori,et al.  Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition , 2020, Scientific Reports.

[4]  M. Oda,et al.  Study on the initial growth mechanism of (ZnO)1−x(InN)x using first-principles calculation , 2019, Japanese Journal of Applied Physics.

[5]  D. Yamashita,et al.  Sputter Epitaxy of (ZnO)_x(InN)_1-x films on Lattice-mismatched Sapphire Substrate , 2019, MRS Advances.

[6]  M. Oda,et al.  Electronic structure of (ZnO)1−x(InN)x alloys calculated by interacting quasi-band theory , 2019, Japanese Journal of Applied Physics.

[7]  D. Yamashita,et al.  Photoluminescence of (ZnO)0.82(InN)0.18 Films: Incident Light Angle Dependence , 2018, Materials Science Forum.

[8]  Takashi Taniguchi,et al.  Room-temperature electrical control of exciton flux in a van der Waals heterostructure , 2018, Nature.

[9]  H. Makino,et al.  Influence of crystallographic polarity on the opto-electrical properties of polycrystalline ZnO thin films deposited by magnetron sputtering , 2018 .

[10]  M. Hori,et al.  Densities and Surface Reaction Probabilities of Oxygen and Nitrogen Atoms During Sputter Deposition of ZnInON on ZnO , 2017, IEEE Transactions on Plasma Science.

[11]  J. Wong-Leung,et al.  Comparison of the structural properties of Zn-face and O-face single crystal homoepitaxial ZnO epilayers grown by RF-magnetron sputtering , 2017 .

[12]  K. Matsushima,et al.  Blue Photoluminescence of (ZnO)_0.92(InN)_0.08 , 2017 .

[13]  M. R. Wagner,et al.  Polarity in GaN and ZnO: Theory, measurement, growth, and devices , 2016 .

[14]  K. Matsushima,et al.  Room Temperature Fabrication of (ZnO)_x(InN)_1-x films with Step-Terrace Structure by RF Magnetron Sputtering , 2016 .

[15]  R. Shimizu,et al.  Fabrication of ZnInON/ZnO multi-quantum well solar cells , 2015 .

[16]  Naho Itagaki,et al.  Synthesis and characterization of ZnInON semiconductor: a ZnO-based compound with tunable band gap , 2014 .

[17]  S. Chatterjee,et al.  Atomic force microscopy in biofilm study. , 2014, Microscopy.

[18]  K. Ando,et al.  Growth mechanisms of ZnO(0001) investigated using the first-principles calculation , 2012 .

[19]  I. Ferguson,et al.  Compositional instability in strained InGaN epitaxial layers induced by kinetic effects , 2011 .

[20]  A. Gossard,et al.  Excitonic switches operating at around 100 K , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[21]  A. Gossard,et al.  Exciton optoelectronic transistor. , 2007, Optics letters.

[22]  S. Mahajan,et al.  Compositional dependence of phase separation in InGaN layers , 2004 .

[23]  T. Yao,et al.  High‐quality ZnO epilayers grown on Zn‐polar ZnO substrates by plasma‐assisted molecular beam epitaxy , 2004 .

[24]  Christian Teichert,et al.  Self-organization of nanostructures in semiconductor heteroepitaxy , 2002 .

[25]  C. Su,et al.  Polarity effects of substrate surface in homoepitaxial ZnO film growth , 2000 .

[26]  H. Koinuma,et al.  Homoepitaxial growth mechanism of ZnO(0001): Molecular-dynamics simulations , 2000 .

[27]  Q. Guo,et al.  Thermal stability of indium nitride single crystal films , 1993 .

[28]  Savage,et al.  Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). , 1990, Physical review letters.

[29]  1995 Liu,et al.  United States Patent , 2011 .

[30]  Band Gap Control and Properties of IndiumZinc Oxynitride Thin Films Grown by Molecular Beam Epitaxy , 2022 .