Linear programming, the simplex algorithm and simple polytopes
暂无分享,去创建一个
[1] George B. Dantzig,et al. Linear programming and extensions , 1965 .
[2] Gil Kalai. The Diameter of Graphs of Convex Polytopes and f-Vector Theory , 1990, Applied Geometry And Discrete Mathematics.
[3] L. Khachiyan. Polynomial algorithms in linear programming , 1980 .
[4] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[5] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[6] V. Klee,et al. HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .
[7] Gil Kalai. A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.
[8] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[9] Bernd Gärtner. A Subexponential Algorithm for Abstract Optimization Problems , 1995, SIAM J. Comput..
[10] D. Larman. Paths on Polytopes , 1970 .
[11] Kenneth L. Clarkson,et al. A Las Vegas algorithm for linear programming when the dimension is small , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[12] Carl W. Lee,et al. A Proof of the Sufficiency of McMullen's Conditions for f-Vectors of Simplicial Convex Polytopes , 1981, J. Comb. Theory A.
[13] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[14] Jiří Matoušek,et al. Lower Bounds for a Subexponential Optimization Algorithm , 1994, Random Struct. Algorithms.
[15] Micha Sharir,et al. A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.
[16] Martin E. Dyer,et al. Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.
[17] Kenneth L. Clarkson,et al. Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.
[18] Micha Sharir,et al. A subexponential bound for linear programming , 1992, SCG '92.
[19] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[20] Roswitha Blind,et al. Puzzles and polytope isomorphisms , 1987 .
[21] Éva Tardos,et al. A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..
[22] R. Stanley. The number of faces of a simplicial convex polytope , 1980 .
[23] G. Kalai,et al. A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.
[24] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[25] Gil Kalai. Upper bounds for the diameter and height of graphs of convex polyhedra , 1992, Discret. Comput. Geom..
[26] Micha Sharir,et al. A Subexponential Bound for Linear Programming , 1992, Symposium on Computational Geometry.
[27] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[28] G. Ziegler. Lectures on Polytopes , 1994 .
[29] Bernd Gärtner,et al. Randomized Simplex Algorithms on Klee-Minty Cubes , 1998, Comb..
[30] Victor Klee,et al. Many Polytopes Meeting the Conjectured Hirsch Bound , 1998, Discret. Comput. Geom..
[31] Peter McMullen,et al. On simple polytopes , 1993 .
[32] Raimund Seidel,et al. Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..
[33] L. G. H. Cijan. A polynomial algorithm in linear programming , 1979 .
[34] Gil Kalai,et al. A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.