Linear programming, the simplex algorithm and simple polytopes

In the first part of the paper we survey some far-reaching applications of the basic facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concerning the simplex algorithm. We describe subexponential randomized pivot rules and upper bounds on the diameter of graphs of polytopes. © 1997 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  Gil Kalai The Diameter of Graphs of Convex Polytopes and f-Vector Theory , 1990, Applied Geometry And Discrete Mathematics.

[3]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[4]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[5]  P. McMullen The maximum numbers of faces of a convex polytope , 1970 .

[6]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[7]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[8]  K. Borgwardt The Simplex Method: A Probabilistic Analysis , 1986 .

[9]  Bernd Gärtner A Subexponential Algorithm for Abstract Optimization Problems , 1995, SIAM J. Comput..

[10]  D. Larman Paths on Polytopes , 1970 .

[11]  Kenneth L. Clarkson,et al.  A Las Vegas algorithm for linear programming when the dimension is small , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[12]  Carl W. Lee,et al.  A Proof of the Sufficiency of McMullen's Conditions for f-Vectors of Simplicial Convex Polytopes , 1981, J. Comb. Theory A.

[13]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[14]  Jiří Matoušek,et al.  Lower Bounds for a Subexponential Optimization Algorithm , 1994, Random Struct. Algorithms.

[15]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[16]  Martin E. Dyer,et al.  Random walks, totally unimodular matrices, and a randomised dual simplex algorithm , 1994, IPCO.

[17]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[18]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[19]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[20]  Roswitha Blind,et al.  Puzzles and polytope isomorphisms , 1987 .

[21]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[22]  R. Stanley The number of faces of a simplicial convex polytope , 1980 .

[23]  G. Kalai,et al.  A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.

[24]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[25]  Gil Kalai Upper bounds for the diameter and height of graphs of convex polyhedra , 1992, Discret. Comput. Geom..

[26]  Micha Sharir,et al.  A Subexponential Bound for Linear Programming , 1992, Symposium on Computational Geometry.

[27]  V. Klee,et al.  Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .

[28]  G. Ziegler Lectures on Polytopes , 1994 .

[29]  Bernd Gärtner,et al.  Randomized Simplex Algorithms on Klee-Minty Cubes , 1998, Comb..

[30]  Victor Klee,et al.  Many Polytopes Meeting the Conjectured Hirsch Bound , 1998, Discret. Comput. Geom..

[31]  Peter McMullen,et al.  On simple polytopes , 1993 .

[32]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[33]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[34]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.