The sea urchin (Strongylocentrotus purpuratus) test and spine proteomes

[1]  C. Ettensohn,et al.  The Morphogenesis and Biomineralization of the Sea Urchin Larval Skeleton , 2008 .

[2]  Christian J. A. Sigrist,et al.  Nucleic Acids Research Advance Access published November 14, 2007 The 20 years of PROSITE , 2007 .

[3]  D. McClay,et al.  FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development , 2007 .

[4]  K. Mann The chicken egg white proteome , 2007, Proteomics.

[5]  M. Alliegro,et al.  Echinonectin is a Del-1-like molecule with regulated expression in sea urchin embryos. , 2007, Gene expression patterns : GEP.

[6]  Edmund Buerlein Handbook of Biomineralization , 2007 .

[7]  H. Lehrach,et al.  A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks , 2007, Genome Biology.

[8]  Friedhelm Pfeiffer,et al.  The low molecular weight proteome of Halobacterium salinarum. , 2007, Journal of proteome research.

[9]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[10]  D. Maglott,et al.  A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. , 2006, Developmental biology.

[11]  S. Hussain,et al.  Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. , 2006, Developmental biology.

[12]  D. McClay,et al.  RTK and TGF-β signaling pathways genes in the sea urchin genome , 2006 .

[13]  Robert D Burke,et al.  The echinoderm adhesome. , 2006, Developmental biology.

[14]  Andrew R. Jackson,et al.  The Genome of the Sea Urchin Strongylocentrotus purpuratus , 2006, Science.

[15]  Jesper V Olsen,et al.  Proteomic analysis of the acid‐soluble organic matrix of the chicken calcified eggshell layer , 2006, Proteomics.

[16]  M. Mann,et al.  Parts per Million Mass Accuracy on an Orbitrap Mass Spectrometer via Lock Mass Injection into a C-trap*S , 2005, Molecular & Cellular Proteomics.

[17]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[18]  C. Ettensohn,et al.  P16 is an essential regulator of skeletogenesis in the sea urchin embryo. , 2005, Developmental biology.

[19]  F. Wilt Developmental biology meets materials science: Morphogenesis of biomineralized structures. , 2005, Developmental biology.

[20]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[21]  M. Mann,et al.  Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[23]  M. Stauber,et al.  On the ultrastructure and the supposed function of the mineralizing matrix coat of sea urchins (Echinodermata, Echinoida) , 1989, Zoomorphology.

[24]  K. Märkel,et al.  The spine tissues in the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[25]  K. Märkel,et al.  Calcite-resorption in the spine of the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[26]  F. Wilt,et al.  Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells. , 2003, Journal of experimental zoology. Part A, Comparative experimental biology.

[27]  C. Killian,et al.  Development of calcareous skeletal elements in invertebrates. , 2003, Differentiation; research in biological diversity.

[28]  D. Allemand,et al.  Composition of Biomineral Organic Matrices with Special Emphasis on Turbot (Psetta maxima) Otolith and Endolymph , 2003, Calcified Tissue International.

[29]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[30]  C. Ettensohn,et al.  Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus , 2002, Development Genes and Evolution.

[31]  F. Wilt Biomineralization of the Spicules of Sea Urchin Embryos , 2002, Zoological science.

[32]  Jean-Yves ExpositoSg,et al.  Sea Urchin Collagen Evolutionarily Homologous to Vertebrate Proa 2 ( 1 ) Collagen * , 2001 .

[33]  T. Nagai,et al.  Partial characterization of collagen from purple sea urchin (Anthocidaris crassispina) test , 2000 .

[34]  M. Fritz,et al.  The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. , 2000, European journal of biochemistry.

[35]  Christopher Killian,et al.  Ultrastructural Localization of Proteins Involved in Sea Urchin Biomineralization , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[36]  F. Wilt,et al.  Matrix and mineral in the sea urchin larval skeleton. , 1999, Journal of structural biology.

[37]  S. Weiner,et al.  Cellular control over spicule formation in sea urchin embryos: A structural approach. , 1999, Journal of structural biology.

[38]  D. McClay,et al.  Ectoderm cell--ECM interaction is essential for sea urchin embryo skeletogenesis. , 1998, Developmental biology.

[39]  F. Wilt,et al.  Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo. , 1998, Developmental biology.

[40]  T. Myers,et al.  A structural approach , 1998 .

[41]  S. Weiner,et al.  Design strategies in mineralized biological materials , 1997 .

[42]  M. Tomita,et al.  Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus † , 1996, Development, growth & differentiation.

[43]  N. Urano,et al.  Occurrence of fibrillar collagen with structure of (α1)2α2 in the test of sea urchin Asthenosoma ijimai , 1996 .

[44]  C. Killian,et al.  Characterization of the Proteins Comprising the Integral Matrix of Strongylocentrotus purpuratus Embryonic Spicules (*) , 1996, The Journal of Biological Chemistry.

[45]  G. Deléage,et al.  Characterization of two genes coding for a similar four-cysteine motif of the amino-terminal propeptide of a sea urchin fibrillar collagen. , 1995, European journal of biochemistry.

[46]  R. Raff,et al.  Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. , 1995, Developmental biology.

[47]  W. Lennarz,et al.  Spiculogenesis in the sea urchin embryo: Studies on the SM30 spicule matrix protein , 1995 .

[48]  I. Duncan,et al.  Development of myelin mosaicism in the optic nerve of heterozygotes of the X-linked myelin-deficient (md) rat mutant. , 1993, Developmental biology.

[49]  R. Timpl,et al.  Amino-acid sequence and cell-adhesion activity of a fibril-forming collagen from the tube worm Riftia pachyptila living at deep sea hydrothermal vents. , 1992, European journal of biochemistry.

[50]  J. Exposito,et al.  Novel amino-terminal propeptide configuration in a fibrillar procollagen undergoing alternative splicing. , 1992, The Journal of biological chemistry.

[51]  J. Exposito,et al.  Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. , 1992, The Journal of biological chemistry.

[52]  S. Weiner,et al.  Control and Design Principles in Biological Mineralization , 1992 .

[53]  C. Killian,et al.  Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein. , 1991, Developmental biology.

[54]  M. Alliegro,et al.  The structure and activities of echinonectin: a developmentally regulated cell adhesion glycoprotein with galactose-specific lectin activity. , 1991, Glycobiology.

[55]  K. Yoshizato,et al.  Biochemical and immunological characterization of collagen molecules from echinothurioid sea urchin Asthenosoma ijimai. , 1990, Biochimica et biophysica acta.

[56]  R. Raff,et al.  Promoter structure and protein sequence of msp130, a lipid-anchored sea urchin glycoprotein. , 1990, The Journal of biological chemistry.

[57]  G. C. Wright,et al.  A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo , 1989, The Journal of cell biology.

[58]  W. Strittmatter,et al.  Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells. , 1989, Experimental cell research.

[59]  T. Kitajima,et al.  Expression of an embryonic spicule matrix gene in calcified tissues of adult sea urchins. , 1989, Developmental biology.

[60]  W. Lennarz,et al.  Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos. , 1987, Developmental biology.

[61]  R. Raff,et al.  Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. , 1987, Developmental biology.

[62]  S. Benson,et al.  Carbonic anhydrase activity in developing sea urchin embryos. , 1979, Experimental cell research.

[63]  B. Heatfield,et al.  Ultrastructural studies of regenerating spines of the sea urchin Strongylocentrotus purpuratus I. Cell types without spherules , 1975, Journal of morphology.