Nonconvergence of formal integrals: II. Improved estimates for the optimal order of truncation
暂无分享,去创建一个
[1] Christos Efthymiopoulos,et al. Non-convergence of formal integrals of motion , 2003 .
[2] George Contopoulos,et al. Order and Chaos in Dynamical Astronomy , 2002 .
[3] G. Haller,et al. Chaos near resonance , 1999 .
[4] L. Niederman. Nonlinear stability around an elliptic equilibrium point in a Hamiltonian system , 1998 .
[5] G. Benettin,et al. Nekhoroshev-Stability of Elliptic Equilibria of Hamiltonian Systems , 1998 .
[6] A. Giorgilli,et al. On the role of high order resonances in normal forms and in separatrix splitting , 1997 .
[7] P. Lochak,et al. Canonical perturbation theory via simultaneous approximation , 1992 .
[8] M. Robnik,et al. Improved accuracy of the Birkhoff-Gustavson normal form and its convergence properties , 1992 .
[9] M. K. Ali,et al. On the limitations of the Birkhoff-Gustavson normal form approach , 1987 .
[10] B. Eckhardt. Birkhoff-Gustavson normal form in classical and quantum mechanics , 1986 .
[11] Antonio Giorgilli,et al. A computer program for integrals of motion , 1984 .
[12] G. Benettin,et al. Resonances and asymptotic behavior of Birkhoff series , 1983 .
[13] N N Nekhoroshev,et al. AN EXPONENTIAL ESTIMATE OF THE TIME OF STABILITY OF NEARLY-INTEGRABLE HAMILTONIAN SYSTEMS , 1977 .
[14] S. I. Adyan. An Axiomatic Method of Constructing Groups with Given Properties , 1977 .
[15] André Deprit,et al. Canonical transformations depending on a small parameter , 1969 .
[16] M. Moutsoulas,et al. Theory of orbits , 1968 .
[17] Gen-Ichiro Hori,et al. Theory of general perturbations with unspecified canonical variables , 1966 .
[18] F. G. Gustavson,et al. Oil constructing formal integrals of a Hamiltonian system near ail equilibrium point , 1966 .
[19] G. Contopoulos. Resonance Cases and Small Divisors in a Third Integral of Motion. I , 1963 .
[20] C. L. Siegel. On the Integrals of Canonical Systems , 1941 .
[21] T. Cherry. Integrals developable about a singular point of a Hamiltonian system of differential equations. Part II , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.
[22] T. Cherry. On Integrals developable about a Singular Point of a Hamiltonian System of Differential Equations , 1924, Mathematical Proceedings of the Cambridge Philosophical Society.
[23] Edmund Taylor Whittaker. VII.—On the Adelphic Integral of the Differential Equations of Dynamics , 1918 .
[24] Henri Poincaré,et al. méthodes nouvelles de la mécanique céleste , 1892 .