Regularization method for large eddy simulations of shock-turbulence interactions

The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k^(−5/3), and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

[1]  Jonathan B. Freund,et al.  Proposed Inflow/Outflow Boundary Condition for Direct Computation of Aerodynamic Sound , 1997 .

[2]  T. Dubois,et al.  The subgrid-scale estimation model applied to large eddy simulations of compressible turbulence , 2002 .

[3]  D. Livescu,et al.  Vorticity dynamics after the shock–turbulence interaction , 2016 .

[4]  W. Cabot,et al.  A high-wavenumber viscosity for high-resolution numerical methods , 2004 .

[5]  B. Kosović,et al.  Subgrid-scale modeling for large-eddy simulations of compressible turbulence , 2002 .

[6]  Daniel Livescu,et al.  Turbulence structure behind the shock in canonical shock–vortical turbulence interaction , 2014, Journal of Fluid Mechanics.

[7]  T. Lundgren,et al.  Strained spiral vortex model for turbulent fine structure , 1982 .

[8]  Stefan Hickel,et al.  Subgrid-scale modeling for implicit large eddy simulation of compressible flows and shock-turbulence interaction , 2014 .

[9]  J. A. Domaradzki,et al.  Large eddy simulations using truncated Navier–Stokes equations with the automatic filtering criterion , 2008 .

[10]  Parviz Moin,et al.  Direct numerical simulation of isotropic turbulence interacting with a weak shock wave , 1993, Journal of Fluid Mechanics.

[11]  Sanjiva K. Lele,et al.  Reynolds- and Mach-number effects in canonical shock–turbulence interaction , 2013, Journal of Fluid Mechanics.

[12]  Tobias Voelkl,et al.  A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation of incompressible flow , 2000 .

[13]  Ravi Samtaney,et al.  Direct numerical simulation of decaying compressible turbulence and shocklet statistics , 2001 .

[14]  Hervé Jeanmart,et al.  Hyperviscosity and vorticity-based models for subgrid scale modeling , 1997 .

[15]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[16]  F. Nicoud,et al.  Large-Eddy Simulation of the Shock/Turbulence Interaction , 1999 .

[17]  G. Blaisdell,et al.  Numerical simulation of compressible homogeneous turbulence , 1991 .

[18]  D. I. Meiron,et al.  Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations , 2011, Journal of Fluid Mechanics.

[19]  H. Ribner,et al.  Shock-turbulence interaction and the generation of noise , 1954 .

[20]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[21]  Daniel Chung,et al.  Large-eddy simulation and wall modelling of turbulent channel flow , 2009, Journal of Fluid Mechanics.

[22]  Ralf Deiterding,et al.  A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading , 2006, Engineering with Computers.

[23]  N. A. Adams,et al.  On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface , 2014, Journal of Fluid Mechanics.

[24]  P. Sagaut,et al.  Large-Eddy Simulation of Shock/Homogeneous Turbulence Interaction , 2002 .

[25]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[26]  Andrew W. Cook,et al.  Short Note: Hyperviscosity for shock-turbulence interactions , 2005 .

[27]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[28]  Jean-Bernard Cazalbou,et al.  Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence , 2002 .

[29]  J. Bonnet,et al.  Experimental study of a normal shock/homogeneous turbulence interaction , 1996 .

[30]  D. Meiron,et al.  Transition to turbulence in shock-driven mixing: a Mach number study , 2011, Journal of Fluid Mechanics.

[31]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[32]  D. Pullin,et al.  Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks , 2004 .

[33]  Y. Andreopoulos,et al.  Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields , 2005, Journal of Fluid Mechanics.

[34]  M. Petersen,et al.  Forcing for statistically stationary compressible isotropic turbulence , 2010 .

[35]  D. Pullin,et al.  A vortex-based subgrid stress model for large-eddy simulation , 1997 .

[36]  P. Dimotakis The mixing transition in turbulent flows , 2000, Journal of Fluid Mechanics.

[37]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[38]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[39]  Sanjiva K. Lele,et al.  Direct numerical simulations of canonical shock/turbulence interaction , 2008, Proceeding of Sixth International Symposium on Turbulence and Shear Flow Phenomena.

[40]  S. Ghosal An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence , 1996 .

[41]  Dale Pullin,et al.  Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock , 2006, Journal of Fluid Mechanics.

[42]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[43]  Steven A. Orszag,et al.  Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers , 1996, Journal of Fluid Mechanics.