White light‐emitting diodes: History, progress, and future

About twenty years ago, in the autumn of 1996, the first white light-emitting diodes (LEDs) were offered for sale. These then-new devices ushered in a new era in lighting by displacing lower-efficiency conventional light sources including Edison's venerable incandescent lamp as well as the Hg-discharge-based fluorescent lamp. We review the history of the conception, improvement, and commercialization of the white LED. Early models of white LEDs already exceeded the efficiency of low-wattage incandescent lamps, and extraordinary progress has been made during the last 20 years. The review also includes a discussion of advances in blue LED chips, device architecture, light extraction, and phosphors. Finally, we offer a brief outlook on opportunities provided by smart LED technology.

[1]  Alan J. Heeger,et al.  White light from InGaN/conjugated polymer hybrid light-emitting diodes , 1997 .

[2]  M. Yamada,et al.  Red-Enhanced White-Light-Emitting Diode Using a New Red Phosphor , 2003 .

[3]  Xiaobing Luo,et al.  LED Packaging for Lighting Applications: Design, Manufacturing and Testing , 2011 .

[4]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[5]  D. H. Mash,et al.  Light-emitting diodes , 1977, Nature.

[6]  M. George Craford Visible Light-Emitting Diodes: Past, Present, and Very Bright Future , 2000 .

[7]  W. Marsden I and J , 2012 .

[8]  Jae-Hyun Ryou,et al.  Visible Light-Emitting Diodes With Thin-Film-Flip- Chip-Based Wafer-Level Chip-Scale Package Technology Using Anisotropic Conductive Film Bonding , 2015, IEEE Electron Device Letters.

[9]  Michael R. Krames,et al.  High-power AlGaInN flip-chip light-emitting diodes , 2001 .

[10]  Shuji Nakamura,et al.  Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding , 2006 .

[11]  Takashi Mukai,et al.  Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes , 1995 .

[12]  Andrew G. Glen,et al.  APPL , 2001 .

[13]  S. Peralta,et al.  Applications for advanced solid-state lamps , 1998 .

[14]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[15]  Arpad Bergh,et al.  The Promise and Challenge of Solid-State Lighting , 2001 .

[16]  M. Krames,et al.  Performance of High Power Light Emitting Diodes in Display Illumination Applications , 2007, Journal of Display Technology.

[17]  Joan M. Redwing,et al.  CRYSTALLOGRAPHIC WET CHEMICAL ETCHING OF GAN , 1998 .

[18]  Zach DeVito,et al.  Opt , 2017 .

[19]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[20]  J.Y. Tsao,et al.  Solid-state lighting: lamps, chips and materials for tomorrow , 2005, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[21]  T. S. Tan,et al.  High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency , 1999 .

[22]  G. DeFriese,et al.  The New York Times , 2020, Publishing for Libraries.

[23]  Bertoldi Paolo,et al.  Solid state lighting review – Potential and challenges in Europe , 2014 .

[24]  S. Nakamura,et al.  Characteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes , 1999 .

[25]  Misook Kim,et al.  The anti‐inflammatory mechanism of 635 nm light‐emitting‐diode irradiation compared with existing COX inhibitors , 2007, Lasers in surgery and medicine.

[26]  Junichi Shimada,et al.  Medical lighting composed of LED arrays for surgical operation , 2001, SPIE OPTO.

[27]  Wei Zhang,et al.  Transparent Ce:Y3Al5O12 ceramic phosphors for white light-emitting diodes , 2012 .

[28]  Akira Sakai,et al.  Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy , 1997 .

[29]  F. Julien,et al.  Flexible Light-Emitting Diodes Based on Vertical Nitride Nanowires. , 2015, Nano letters.

[30]  G. Chen,et al.  Performance of high‐power III‐nitride light emitting diodes , 2008 .

[31]  E. Schubert,et al.  Solid-state lighting—a benevolent technology , 2006 .

[32]  Takashi Miyoshi,et al.  Recent development of nitride LEDs and LDs , 2009, OPTO.

[33]  Hongwei Lu,et al.  Advances in Transparent Glass-Ceramic Phosphors for White Light-Emitting Diodes---A Review , 2015 .

[34]  E. Schubert,et al.  Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency , 2012 .

[35]  Ray-Hua Horng,et al.  AlGaInP/AuBe/glass light-emitting diodes fabricated by wafer bonding technology , 1999 .

[36]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[37]  Harald Haas,et al.  Indoor optical wireless communication: potential and state-of-the-art , 2011, IEEE Communications Magazine.

[38]  J. Armstrong,et al.  Analysis of an Optical Wireless Receiver Using a Hemispherical Lens With Application in MIMO Visible Light Communications , 2013, Journal of Lightwave Technology.

[39]  E. Fred Schubert,et al.  Optically functional surface structures for GaN-based light-emitting diodes , 2013 .

[40]  Jacques I. Pankove,et al.  Luminescence in GaN , 1973 .

[41]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[42]  S. Nakamura,et al.  Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes , 1994 .

[43]  Paul S. Martin,et al.  Illumination with solid state lighting technology , 2002 .

[44]  W. N. Carr,et al.  ONE‐WATT GaAs p‐n JUNCTION INFRARED SOURCE , 1963 .

[45]  Daqin Chen,et al.  A new‐generation color converter for high‐power white LED: transparent Ce3+:YAG phosphor‐in‐glass , 2014 .

[46]  Jerry A. Simmons,et al.  Solid-State Lighting: An Integrated Human Factors, Technology, and Economic Perspective , 2010, Proceedings of the IEEE.

[47]  Serdar Yilmaz,et al.  An overview of visible light communication systems , 2015, ArXiv.

[48]  Jongseung Yoon,et al.  Fully Flexible GaN Light‐Emitting Diodes through Nanovoid‐Mediated Transfer , 2014 .

[49]  Gyu-Chul Yi Kunook Chung Optoelectronic Devices Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for , 2014 .

[50]  Anurag Tyagi,et al.  Bulk GaN based violet light-emitting diodes with high efficiency at very high current density , 2012 .

[51]  Isamu Akasaki,et al.  High‐quality GaInN/GaN multiple quantum wells , 1996 .

[52]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[53]  Shuji Nakamura,et al.  The blue laser diode-the complete story , 2000 .

[54]  Hai Guo,et al.  Combined White Luminescence from Eu3+, ML–Ag Particles and Ag+ in Ag–Eu3+ Co-Doped H3BO3–BaF2 Glasses , 2012 .

[55]  OkJoon Kim,et al.  In vitro bactericidal effects of 625, 525, and 425 nm wavelength (red, green, and blue) light-emitting diode irradiation. , 2013, Photomedicine and laser surgery.

[57]  Cristina Kurachi,et al.  Correlation between light transmission and permeability of human dentin , 2011, Lasers in Medical Science.

[58]  G. Blasse,et al.  A NEW PHOSPHOR FOR FLYING‐SPOT CATHODE‐RAY TUBES FOR COLOR TELEVISION: YELLOW‐EMITTING Y3Al5O12–Ce3+ , 1967 .

[59]  Adrian Neild,et al.  Visible light positioning: a roadmap for international standardization , 2013, IEEE Commun. Mag..

[60]  Richard P. Schneider,et al.  High-brightness AlGaInN light-emitting diodes , 2000, Photonics West - Optoelectronic Materials and Devices.

[61]  Michael R. Krames,et al.  Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2 , 2007 .

[62]  Masaichi-chang-il Lee,et al.  Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation. , 2013, Journal of photochemistry and photobiology. B, Biology.

[63]  Robert F. Davis,et al.  Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy , 1997 .

[64]  M. G. Craford Visible LEDs: the trend toward high-power emitters and remaining challenges for solid state lighting , 2002, SPIE Optics + Photonics.

[65]  Junichi Shimada,et al.  Development of lighting goggles with power white LED modules , 2003, SPIE OPTO.

[66]  M. George Craford,et al.  LEDs for solid state lighting and other emerging applications: status, trends, and challenges , 2005, SPIE Optics + Photonics.

[67]  Dan Oron,et al.  Colloidal Double Quantum Dots , 2016, Accounts of chemical research.

[68]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[69]  Shuji Nakamura,et al.  The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .

[70]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[71]  E. Schubert,et al.  Efficiency droop in light‐emitting diodes: Challenges and countermeasures , 2013 .

[72]  P. Schlotter,et al.  Luminescence conversion of blue light emitting diodes , 1997 .

[73]  E. F. Schubert,et al.  Light‐Extraction Enhancement of GaInN Light‐Emitting Diodes by Graded‐Refractive‐Index Indium Tin Oxide Anti‐Reflection Contact , 2008 .

[74]  Wood-Hi Cheng,et al.  High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce 3+ :YAG inter-diffusion , 2014 .

[75]  Myung-Hee Sohn,et al.  Effect of blue light emitting diodes on melanoma cells: involvement of apoptotic signaling. , 2015, Journal of photochemistry and photobiology. B, Biology.

[76]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[77]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[78]  Kai Wang,et al.  Status and prospects for phosphor-based white LED packaging , 2009 .

[79]  Michael R. Krames,et al.  Auger recombination in InGaN measured by photoluminescence , 2007 .

[80]  Myung-Hee Sohn,et al.  Blue light emitting diode induces apoptosis in lymphoid cells by stimulating autophagy. , 2016, The international journal of biochemistry & cell biology.

[81]  Yukio Narukawa,et al.  White-Light LEDS , 2004 .

[82]  Yunsheng Hu,et al.  Preparation and luminescent properties of (Ca1-x,Srx)S:Eu2+ red-emitting phosphor for white LED , 2005 .

[83]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[84]  Takashi Mukai,et al.  Ultra-High Efficiency White Light Emitting Diodes , 2006 .

[85]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[86]  R. Wheeler,et al.  Significant reduction in energy for plant-growth lighting in space using targeted LED lighting and spectral manipulation , 2014 .

[87]  Robert V. Steele,et al.  The story of a new light source , 2007 .

[88]  K. Bando,et al.  Development of High-bright and Pure-white LED Lamps , 1998 .

[89]  S. Nakamura,et al.  Thermal Annealing Effects on P-Type Mg-Doped GaN Films , 1992 .

[90]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[91]  Un Jeong Kim,et al.  Nearly single-crystalline GaN light-emitting diodes on amorphous glass substrates , 2011 .

[92]  Jong Kyu Kim,et al.  Solid-State Light Sources Getting Smart , 2005, Science.

[93]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[94]  Shuji Nakamura,et al.  High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes , 1995 .