Baseline of numerical simulations for ZnTe based thin-film solar cells

Numerical modelling of photovoltaic solar cells is an important strategy to test the viability of proposed physical structures and their performance. This article introduces the concept of numerical simulation and explain the relevant physical models for the inside physical phenomenon like generation, recombination and transport of charge carriers (holes and electrons) in photovoltaic materials. This will made with essential input parameters, to have consistent and acceptable results. It is extremely useful to have a common baseline or starting point for researchers working on the same problem under different conditions irrespective of the place, group, research environment and tools/software used. The numerical work, hence produces results for fitting of modelling output to experimental results, predicting the effect of changes in material properties and geometry of cell performance and testing the viability of proposed physical device. A case-study for baseline parameter sets are presented that describes ZnTe based thin-film solar cells consist in ZnO/n-CdS/p-ZnTe in a substrate sequence. This model can be used as a baseline for more complicated models and will help photovoltaic researchers for enhancing the efficiency and reduction the costs in $/Wp of photovoltaic devices.

[1]  B. Marí,et al.  ZnTe thin films grown by electrodeposition technique on Fluorine Tin Oxide substrates , 2014 .

[2]  W. Jaegermann,et al.  Utilization of sputter depth profiling for the determination of band alignment at polycrystalline CdTe/CdS heterointerfaces , 2002 .

[3]  Andrew G. Glen,et al.  APPL , 2001 .

[4]  Shin-Jung Choi,et al.  Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes , 2003 .

[5]  K. Hynes,et al.  Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues , 2005 .

[6]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[7]  B. M. Soucase,et al.  A numerical simulation study of ZnTe-based solar cells , 2014, 2014 International Renewable and Sustainable Energy Conference (IRSEC).

[8]  Marc Burgelman,et al.  Modeling thin‐film PV devices , 2004 .

[9]  Tsai,et al.  Proposed explanation of the p-type doping proclivity of ZnTe. , 1991, Physical review. B, Condensed matter.

[10]  C. Winnewisser,et al.  Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe , 1997 .

[11]  S. Adachi,et al.  Photoreflectance study in the E1 and E1+Delta1 transition regions of ZnTe , 2000 .

[12]  L. Kazmerski,et al.  Thin‐film CuInSe2/CdS heterojunction solar cells , 1976 .

[13]  Rommel Noufi,et al.  Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .

[14]  D. A. Cusano CdTe solar cells and photovoltaic heterojunctions in II–VI compounds , 1963 .

[15]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[16]  S. O. Ferreira,et al.  Growth of highly doped p-type ZnTe layers on GaAs using a nitrogen DC plasma cell , 1994 .

[17]  A. Fahrenbruch,et al.  Numerical modeling of CIGS and CdTe solar cells: setting the baseline , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[18]  Rommel Noufi,et al.  A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .

[19]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[20]  M. Lux‐Steiner,et al.  Characterization of II-VI compounds on porous substrates , 2000 .

[21]  W. I. Wang,et al.  Doping of ZnTe by molecular beam epitaxy , 1994 .

[22]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[23]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[24]  M. Burgelman,et al.  Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. , 1997 .

[25]  D. Wood,et al.  Transparent conducting zinc oxide thin films doped with aluminum and molybdenum , 2007 .

[26]  M. Burgelman,et al.  Analysis of CdTe solar cells in relation to materials issues , 2005 .

[27]  T. Mahalingam,et al.  Electrochemical deposition of ZnTe thin films , 2002 .

[28]  J. J. Loferski,et al.  Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio , 1979 .

[29]  H. Höchst,et al.  A photoemission investigation of the SnO2/CdS interface: A front contact interface study of CdS/CdTe solar cells , 1993 .

[30]  V. Antonucci,et al.  Preparation and characterization of thin film ZnCuTe semiconductors , 1998 .

[31]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .

[32]  F. Morehead,et al.  Self-Compensation Limited Conductivity in Binary Semiconductors. I. Theory , 1964 .

[33]  Sigurd Wagner,et al.  CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .

[34]  Hossein Movla,et al.  Simulation analysis of the CIGS based thin film solar cells , 2013 .