Baseline of numerical simulations for ZnTe based thin-film solar cells
暂无分享,去创建一个
[1] B. Marí,et al. ZnTe thin films grown by electrodeposition technique on Fluorine Tin Oxide substrates , 2014 .
[2] W. Jaegermann,et al. Utilization of sputter depth profiling for the determination of band alignment at polycrystalline CdTe/CdS heterointerfaces , 2002 .
[3] Andrew G. Glen,et al. APPL , 2001 .
[4] Shin-Jung Choi,et al. Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes , 2003 .
[5] K. Hynes,et al. Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues , 2005 .
[6] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[7] B. M. Soucase,et al. A numerical simulation study of ZnTe-based solar cells , 2014, 2014 International Renewable and Sustainable Energy Conference (IRSEC).
[8] Marc Burgelman,et al. Modeling thin‐film PV devices , 2004 .
[9] Tsai,et al. Proposed explanation of the p-type doping proclivity of ZnTe. , 1991, Physical review. B, Condensed matter.
[10] C. Winnewisser,et al. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe , 1997 .
[11] S. Adachi,et al. Photoreflectance study in the E1 and E1+Delta1 transition regions of ZnTe , 2000 .
[12] L. Kazmerski,et al. Thin‐film CuInSe2/CdS heterojunction solar cells , 1976 .
[13] Rommel Noufi,et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin‐film solar cells , 2003 .
[14] D. A. Cusano. CdTe solar cells and photovoltaic heterojunctions in II–VI compounds , 1963 .
[15] J. Loferski,et al. Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .
[16] S. O. Ferreira,et al. Growth of highly doped p-type ZnTe layers on GaAs using a nitrogen DC plasma cell , 1994 .
[17] A. Fahrenbruch,et al. Numerical modeling of CIGS and CdTe solar cells: setting the baseline , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.
[18] Rommel Noufi,et al. A 21.5% efficient Cu(In,Ga)Se2 thin‐film concentrator solar cell , 2002 .
[19] D. Hariskos,et al. New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .
[20] M. Lux‐Steiner,et al. Characterization of II-VI compounds on porous substrates , 2000 .
[21] W. I. Wang,et al. Doping of ZnTe by molecular beam epitaxy , 1994 .
[22] Uwe Rau,et al. Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .
[23] Antonio Luque,et al. Handbook of photovoltaic science and engineering , 2011 .
[24] M. Burgelman,et al. Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. , 1997 .
[25] D. Wood,et al. Transparent conducting zinc oxide thin films doped with aluminum and molybdenum , 2007 .
[26] M. Burgelman,et al. Analysis of CdTe solar cells in relation to materials issues , 2005 .
[27] T. Mahalingam,et al. Electrochemical deposition of ZnTe thin films , 2002 .
[28] J. J. Loferski,et al. Efficiency of tandem solar cell systems as a function of temperature and solar energy concentration ratio , 1979 .
[29] H. Höchst,et al. A photoemission investigation of the SnO2/CdS interface: A front contact interface study of CdS/CdTe solar cells , 1993 .
[30] V. Antonucci,et al. Preparation and characterization of thin film ZnCuTe semiconductors , 1998 .
[31] Rommel Noufi,et al. SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .
[32] F. Morehead,et al. Self-Compensation Limited Conductivity in Binary Semiconductors. I. Theory , 1964 .
[33] Sigurd Wagner,et al. CuInSe2/CdS heterojunction photovoltaic detectors , 1974 .
[34] Hossein Movla,et al. Simulation analysis of the CIGS based thin film solar cells , 2013 .