Sequential imperfect preventive maintenance policy with random maintenance quality under reliability limit

To determine the optimal maintenance number for a system with random maintenance quality in infinite time horizon, a sequential imperfect preventive maintenance model considering reliability limit is proposed. The proposed model is derived from the combination of the Kijima type virtual age model and the failure rate adjustment model. Maintenance intervals of the proposed model are obtained through an iteration method when both failure rate increase factor and maintenance restoration factor are random variables with a uniform distribution. The optimal maintenance policy is presented by minimizing the long-run average cost rate. A real numerical example for the failures of numerical control equipment is given to demonstrate the proposed model. Finally, a discussion is presented to show how the optimal average cost rate depends on the different cost parameters. The results show that in order to satisfy the practical requirements of high reliability, it is necessary and worthwhile to consider the system's reliability limit in preventive maintenance practice.

[1]  Jasper L. Coetzee The role of NHPP models in the practical analysis of maintenance failure data , 1997 .

[2]  D. N. Prabhakar Murthy,et al.  Optimal Preventive Maintenance Policies for Repairable Systems , 1981, Oper. Res..

[3]  T. Nakagawa Sequential imperfect preventive maintenance policies , 1988 .

[4]  M. Kijima SOME RESULTS FOR REPAIRABLE SYSTEMS WITH GENERAL REPAIR , 1989 .

[5]  Viliam Makis,et al.  A replacement model with overhauls and repairs , 1995 .

[6]  Man-Lai Tang,et al.  Statistical inference and prediction for the Weibull process with incomplete observations , 2008, Comput. Stat. Data Anal..

[7]  Young Ho Chun,et al.  An Algorithm for Preventive Maintenance Policy , 1986, IEEE Transactions on Reliability.

[8]  Lifeng Xi,et al.  Preventive maintenance scheduling for repairable system with deterioration , 2010, J. Intell. Manuf..

[9]  Matija Fajdiga,et al.  Generalized renewal process for repairable systems based on finite Weibull mixture , 2008, Reliab. Eng. Syst. Saf..

[10]  H. Pham,et al.  Invited reviewImperfect maintenance , 1996 .

[11]  V. Jayabalan,et al.  Cost optimization of maintenance scheduling for a system with assured reliability , 1992 .

[12]  T. Nakagawa A summary of imperfect preventive maintenance policies with minimal repair , 1980 .

[13]  Masaaki Kijima,et al.  Periodical replacement problem without assuming minimal repair , 1988 .

[14]  Ming J. Zuo,et al.  General sequential imperfect preventive maintenance models , 2000 .

[15]  T. Nakagawa Periodic and sequential preventive maintenance policies , 1986 .

[16]  Laurent Doyen,et al.  Classes of imperfect repair models based on reduction of failure intensity or virtual age , 2004, Reliab. Eng. Syst. Saf..

[17]  Xiaojun Zhou,et al.  Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation , 2007, Reliab. Eng. Syst. Saf..

[18]  A. Mettas,et al.  Modeling and analysis of repairable systems with general repair , 2005, Annual Reliability and Maintainability Symposium, 2005. Proceedings..

[19]  Mohammad Modarres,et al.  Generalized renewal process for analysis of repairable systems with limited failure experience , 2002, Reliab. Eng. Syst. Saf..

[20]  Derek Clements-Croome,et al.  Preventive maintenance models with random maintenance quality , 2005, Reliab. Eng. Syst. Saf..

[21]  Ming J. Zuo,et al.  Sequential imperfect preventive maintenance models with two categories of failure modes , 2001 .