Permutations of finite fields for check digit systems

AbstractLet q be a prime power. For a divisor n of q − 1 we prove an asymptotic formula for the number of polynomials of the form $$f(X)=\frac{a-b}{n}\left(\sum_{j=1}^{n-1}X^{j(q-1)/n}\right)X+\frac{a+b(n-1)}{n}X\in\mathbb{F}_q[X]$$such that the five (not necessarily different) polynomials f(X), f(X)±X and f(f(X))±X are all permutation polynomials over $${\mathbb{F}_q}$$ . Such polynomials can be used to define check digit systems that detect the most frequent errors: single errors, adjacent transpositions, jump transpositions, twin errors and jump twin errors.

[1]  Harald Niederreiter,et al.  Cyclotomic R-orthomorphisms of finite fields , 2005, Discret. Math..

[2]  H. Niederreiter,et al.  Complete mappings of finite fields , 1982, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[3]  Jacobus Verhoeff,et al.  Error detecting decimal codes , 1969 .

[4]  Anthony B. Evans Orthomorphisms of Zp , 1987, Discret. Math..

[5]  Ralph-Hardo Schulz,et al.  Check Character Systems and Anti-symmetric Mappings , 2001, Computational Discrete Mathematics.

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Huanguo Zhang,et al.  Complete Mapping Polynomials over Finite Field F16 , 2007, WAIFI.

[8]  Harald Niederreiter,et al.  Dickson Polynomials Over Finite Fields and Complete Mappings , 1987, Canadian Mathematical Bulletin.