TransPrint: A Method for Fabricating Flexible Transparent Free-Form Displays

TransPrint is a method for fabricating flexible, transparent free-form displays based on electrochromism. Using screen-printing or inkjet printing of electrochromic ink, plus a straightforward assembly process, TransPrint enables rapid prototyping of displays by nonexperts. The displays are nonlight-emissive and only require power to switch state and support the integration of capacitive touch sensing for interactivity. We present instructions and best practices on how to design and assemble the displays and discuss the benefits and shortcomings of the TransPrint approach. To demonstrate the broad applicability of the approach, we present six application prototypes.

[1]  Yoshihiro Kawahara,et al.  Passive and contactless epidermal pressure sensor printed with silver nano-particle ink , 2016, UbiComp.

[2]  Tohru Yashiro,et al.  Multi-Layered Electrochromic Display , 2011 .

[3]  Ivan Elhart,et al.  Plantxel: Towards a Plant-based Controllable Display , 2018, PerDis.

[4]  M. Berggren,et al.  Printable All‐Organic Electrochromic Active‐Matrix Displays , 2007 .

[5]  David Kim,et al.  FlexSense: a transparent self-sensing deformable surface , 2014, UIST.

[6]  Guanyun Wang,et al.  Printed Paper Actuator: A Low-cost Reversible Actuation and Sensing Method for Shape Changing Interfaces , 2018, CHI.

[7]  Matthew S. Reynolds,et al.  Finding Common Ground: A Survey of Capacitive Sensing in Human-Computer Interaction , 2017, CHI.

[8]  Eric Paulos,et al.  AlterWear: Battery-Free Wearable Displays for Opportunistic Interactions , 2018, CHI.

[9]  Dan Lockton,et al.  Printerface: Screen Printed Electroluminescent Touch Interface , 2017, ISS.

[10]  Gregory D. Abowd,et al.  Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices , 2013, UbiComp.

[11]  Jürgen Steimle,et al.  ObjectSkin: Augmenting Everyday Objects with Hydroprinted Touch Sensors and Displays , 2017, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[12]  P. Sheng,et al.  Paperlike thermochromic display , 2007 .

[13]  Jürgen Steimle,et al.  Interactive Tangrami: Rapid Prototyping with Modular Paper-folded Electronics , 2018, UIST.

[14]  David Sweeney,et al.  Displays as a Material: A Route to Making Displays More Pervasive , 2016, IEEE Pervasive Computing.

[15]  Mark Weiser,et al.  The computer for the 21st Century , 1991, IEEE Pervasive Computing.

[16]  Marco Gruteser,et al.  Printing multi-key touch interfaces , 2015, UbiComp.

[17]  David Lindlbauer,et al.  Tracs: transparency-control for see-through displays , 2014, UIST.

[18]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[19]  Ehud Sharlin,et al.  Interactive two-sided transparent displays: designing for collaboration , 2014, Conference on Designing Interactive Systems.

[20]  Artem Ivanov,et al.  Integration of screen-printed electroluminescent matrix displays in smart textile items — Implementation and evaluation , 2017, 2017 21st European Microelectronics and Packaging Conference (EMPC) & Exhibition.

[21]  Daniel Rönnow,et al.  Spectroscopic light scattering from electrochromic tungsten‐oxide‐based films , 1996 .

[22]  Raimund Dachselt,et al.  IllumiPaper: Illuminated Interactive Paper , 2017, CHI.

[23]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[24]  Gregg C. Vanderheiden,et al.  Web Content Accessibility Guidelines (WCAG) 2.0 , 2008 .

[25]  Stacey Kuznetsov,et al.  Screenprinting and TEI: Supporting Engagement with STEAM through DIY Fabrication of Smart Materials , 2018, Tangible and Embedded Interaction.

[26]  Alex Olwal,et al.  SkinMarks: Enabling Interactions on Body Landmarks Using Conformal Skin Electronics , 2017, CHI.

[27]  Jen Fin Lin,et al.  Fatigue life study of ITO/PET specimens in cyclic bending tests , 2014, Journal of Materials Science: Materials in Electronics.

[28]  David Lindlbauer,et al.  Changing the Appearance of Physical Interfaces Through Controlled Transparency , 2016, UIST.

[29]  Takeshi Naemura,et al.  FunCushion: Fabricating Functional Cushion Interfaces with Fluorescent-Pattern Displays , 2017, ACE.

[30]  Charles A. Czeisler,et al.  Perspective: Casting light on sleep deficiency , 2013, Nature.

[31]  Anton Nijholt,et al.  Smart material interfaces: a new form of physical interaction , 2012, CHI EA '12.

[32]  Qiang Zhao,et al.  Tunable Electrochromic Luminescence of Iridium(III) Complexes for Information Self‐Encryption and Anti‐Counterfeiting , 2016 .

[33]  Jürgen Steimle,et al.  Foldio: Digital Fabrication of Interactive and Shape-Changing Objects With Foldable Printed Electronics , 2015, UIST.

[34]  Jürgen Steimle,et al.  PrintScreen: fabricating highly customizable thin-film touch-displays , 2014, UIST.

[35]  Joseph A. Paradiso,et al.  A cuttable multi-touch sensor , 2013, UIST.

[36]  Suranga Nanayakkara,et al.  PaperPixels: a toolkit to create paper-based displays , 2014, OZCHI.

[37]  B. Sammakia,et al.  Bending Fatigue Study of Sputtered ITO on Flexible Substrate , 2011, Journal of Display Technology.

[38]  Wang Huaqing,et al.  The bending properties of flexible ITO films , 2007, 2007 Asia Optical Fiber Communication and Optoelectronics Conference.

[39]  Hiroshi Ishii,et al.  ClearBoard: a seamless medium for shared drawing and conversation with eye contact , 1992, CHI.

[40]  Joseph A. Paradiso,et al.  Leveraging conductive inkjet technology to build a scalable and versatile surface for ubiquitous sensing , 2011, UbiComp '11.

[41]  Daniel J. Wigdor,et al.  Printem: Instant Printed Circuit Boards with Standard Office Printers & Inks , 2015, UIST.

[42]  Jürgen Steimle Printed electronics for human-computer interaction , 2015, Interactions.

[43]  Federico Casalegno,et al.  Interaction design with building facades , 2010, TEI '10.

[44]  James P. Coleman,et al.  Printed, flexible electrochromic displays using interdigitated electrodes , 1999 .

[45]  Michelangelo Scorpio,et al.  Electrochromic windows: state of art and future developments , 2016 .

[46]  Hsi-Hao Chung,et al.  Contrast‐ratio analysis of sunlight‐readable color LCDs for outdoor applications , 2003 .