Modellierung und Simulation eines Mikrofallfilmabsorbers

In den letzten Jahren haben mikroverfahrenstechnische Prozesse zunehmend das Interesse der Industrie und der Forschungsgemeinschaft geweckt. Diese Prozesse finden in Apparaten mit charakteristischen Abmessungen im Mikro- und Submillimeterbereich statt. Eine wichtige Form der Mikroapparate stellen die Mikrofallfilmapparate dar, die eine Phasengrenzflache bis zu 10 000 m2m–3 aufweisen. Um die Transportvorgange in so einem Mikroapparat theoretisch untersuchen zu konnen, wurde ein rigoroses mathematisches Modell entwickelt, mit dessen Hilfe das Prozessverhalten ausfuhrlich beschrieben werden kann. Das Modell liefert deutlich verlasslichere Vorhersagen gegenuber gangigen vereinfachten Modellierungsansatzen. In recent years, chemical microprocesses have attracted significant interest of both chemical process industry and research community. These processes occur in equipment with characteristic dimensions at micrometer and sub-millimeter scale. An important class of microdevices is represented by falling-film microcontactors with interfacial areas higher than 10 000 m2m–3. For a numerical investigation of the transport processes in such microdevices, a rigorous mathematical model is developed enabling a detailed description of the process performance. The model yields far more reliable results than common simplified modeling methods.

[1]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[2]  W. K. Lewis,et al.  Principles of Gas Absorption. , 1924 .

[3]  A. Schumpe,et al.  The estimation of gas solubilities in salt solutions , 1993 .

[4]  Asterios Gavriilidis,et al.  Catalyst preparation and deactivation issues for nitrobenzene hydrogenation in a microstructured falling film reactor , 2003 .

[5]  Asterios Gavriilidis,et al.  Carbon dioxide absorption in a falling film microstructured reactor : Experiments and modeling , 2005 .

[6]  Wolfgang Ehrfeld,et al.  Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors , 2000 .

[7]  Volker Hessel,et al.  Fluidic bus system for chemical process engineering in the laboratory and for small-scale production , 2005 .

[8]  Horacio Perez-Blanco,et al.  Roll waves in falling films: an approximate treatment of the velocity field , 1996 .

[9]  Asterios Gavriilidis,et al.  Gas-liquid and gas-liquid-solid microstructured reactors : contacting principles and applications , 2005 .

[10]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[11]  Ryszard Pohorecki,et al.  Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions , 1988 .

[12]  Friedhelm Schönfeld,et al.  Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles , 2008 .

[13]  Marcus Grünewald,et al.  Mikrotrenntechnik: Entwicklungsstand und Perspektiven , 2008 .

[14]  J. Giddings,et al.  Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections , 1969 .

[15]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[16]  David Linke,et al.  Application of microstructured reactor technology for the photochemical chlorination of alkylaromatics , 2002 .

[17]  Gerhart Eigenberger,et al.  Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column , 1996 .

[18]  Stephen Whitaker,et al.  Some Theoretical and Experimental Observations of the Wave Structure of Falling Liquid Films , 1977 .