Challenges and Opportunity with Big Data

M&S (Modeling and Simulation) has been widely used as a decision supporting tool by modeling the structure and dynamics of real-world systems on a computer and simulating the models to answer various what-if questions. As simulation models become complex in their dynamics and structures, more engineers are experiencing difficulties to simulate the models with various real-world scenarios and to discover knowledge from the massive amount of simulation results within a practical time bound. In this paper, we propose a hybrid methodology where the M&S process is combined with a DM (Data Mining) process. Our methodology includes a step to inject simulation outputs to a DM process which generates a prediction model by analyzing pertaining patterns in the simulation outputs. The prediction model can be used to replace simulations, if we need to expedite the M&S-based decision making process. We have applied the proposed methodology to analyze SAM (Surface-to-air missile) and confirmed the applicability.