Advances in Space Robotics Autonomy

This chapter presents recent advances in space robotics autonomy technology, some of which have been successfully deployed in NASA missions. In-situ planetary exploration presents unique challenges that can only be addressed by using autonomy technologies. The process of developing command sequences to send to an unmanned planetary spacecraft has always been time-consuming and laborintensive. For future long-duration planetary missions reducing the operations team workload is paramount owing to considerations for human factors, maximizing science return, and optimizing mission resources. Autonomy is a key enabling technology for future long-duration planetary missions such as human precursor missions to Mars, Mars Sample Return missions, Comet Sample Return missions, and in-situ missions to Titan and Europa. With the unprecedented back-to-back successful landing on Mars of the NASA’s Mars Exploration Rovers (MERs), Spirit and Opportunity (2004), Phoenix Mars Lander (2008), and Mars Science Laboratory (2012) over the last decade the robotics autonomous systems community has celebrated several onboard autonomous technologies milestones.

[1]  Tomoharu Nakahara,et al.  A Multiple-baseline Stereo Method , 2002 .

[2]  Mark Maimone,et al.  Mars exploration rover engineering cameras , 2001, Remote Sensing.

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  Larry Matthies,et al.  Stereo vision and rover navigation software for planetary exploration , 2002, Proceedings, IEEE Aerospace Conference.

[5]  Issa A. D. Nesnas,et al.  Rover-Based Visual Target Tracking Validation and Mission Infusion , 2005 .

[6]  Chris Urmson,et al.  A generic framework for robotic navigation , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[7]  J.J. Biesiadecki,et al.  The Mars Exploration Rover surface mobility flight software driving ambition , 2006, 2006 IEEE Aerospace Conference.

[8]  Jeffrey J. Biesiadecki,et al.  Targeted driving using visual tracking on Mars: From research to flight , 2009 .

[9]  D.S. Bayard,et al.  On-board vision-based spacecraft estimation algorithm for small body exploration , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Anthony Stentz,et al.  Global planning on the Mars Exploration Rovers: Software integration and surface testing , 2009 .

[11]  M. Klimesh,et al.  Mars Exploration Rover engineering cameras , 2003 .

[12]  Larry H. Matthies,et al.  The Mars Exploration Rovers Descent Image Motion Estimation System , 2004, IEEE Intell. Syst..

[13]  Larry H. Matthies,et al.  Two years of Visual Odometry on the Mars Exploration Rovers , 2007, J. Field Robotics.

[14]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[15]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[16]  Tara A. Estlin,et al.  Oasis: Onboard autonomous science investigation system for opportunistic rover science , 2007, J. Field Robotics.

[17]  L. Matthies,et al.  Enhanced real-time stereo using bilateral filtering , 2004 .

[18]  Larry H. Matthies,et al.  Visual odometry on the Mars exploration rovers - a tool to ensure accurate driving and science imaging , 2006, IEEE Robotics & Automation Magazine.

[19]  Joseph F. Snyder,et al.  An overview of the Mars exploration rovers' flight software , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[20]  Larry Matthies,et al.  Enhancement of stereo at range discontinuities , 2004, SPIE Defense + Commercial Sensing.

[21]  Larry H. Matthies,et al.  Stereo vision for planetary rovers: Stochastic modeling to near real-time implementation , 1991, Optics & Photonics.

[22]  T. Estlin,et al.  Autonomous onboard traverse science system , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[23]  K. S. Tso,et al.  Instrument deployment testbed: For planetary surface geophysical exploration , 2013, 2013 IEEE Aerospace Conference.

[24]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[26]  Alex S. Fukunaga,et al.  Autonomous Detection of Dust Devils and Clouds on Mars , 2006, 2006 International Conference on Image Processing.

[27]  Andres Huertas,et al.  Stereo-vision-based perception capabilities developed during the Robotics Collaborative Technology Alliances program , 2010, Defense + Commercial Sensing.

[28]  Anthony Stentz,et al.  Using interpolation to improve path planning: The Field D* algorithm , 2006, J. Field Robotics.

[29]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[30]  Larry H. Matthies,et al.  Visual odometry on the Mars Exploration Rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[31]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Heiko Hirschmüller,et al.  Improvements in real-time correlation-based stereo vision , 2001, CVPR 2001.

[33]  Andrew Zisserman,et al.  Multiple View Geometry , 1999 .

[34]  Jeffrey J. Biesiadecki,et al.  Attitude and position estimation on the Mars exploration rovers , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.