A fictitious domain approach to the numerical solution of PDEs in stochastic domains

We present an efficient method for the numerical realization of elliptic PDEs in domains depending on random variables. Domains are bounded, and have finite fluctuations. The key feature is the combination of a fictitious domain approach and a polynomial chaos expansion. The PDE is solved in a larger, fixed domain (the fictitious domain), with the original boundary condition enforced via a Lagrange multiplier acting on a random manifold inside the new domain. A (generalized) Wiener expansion is invoked to convert such a stochastic problem into a deterministic one, depending on an extra set of real variables (the stochastic variables). Discretization is accomplished by standard mixed finite elements in the physical variables and a Galerkin projection method with numerical integration (which coincides with a collocation scheme) in the stochastic variables. A stability and convergence analysis of the method, as well as numerical results, are provided. The convergence is “spectral” in the polynomial chaos order, in any subdomain which does not contain the random boundaries.

[1]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.

[2]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[3]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[4]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[5]  森山 昌彦,et al.  「確率有限要素法」(Stochastic Finite Element Method) , 1985 .

[6]  R. Walters Stochastic Fluid Mechanics via Polynomial Chaos , 2003 .

[7]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[8]  Mario S. Mommer,et al.  A smoothness preserving fictitious domain method for elliptic boundary-value problems , 2006 .

[9]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[10]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[11]  Karl Kunisch,et al.  Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type , 2003, Comput. Optim. Appl..

[12]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[13]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[14]  Jaroslav Haslinger,et al.  Projected Schur complement method for solving non‐symmetric systems arising from a smooth fictitious domain approach , 2007, Numer. Linear Algebra Appl..

[15]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[16]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[17]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[18]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[19]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[20]  M. Loève,et al.  Elementary Probability Theory , 1977 .

[21]  R. Glowinski,et al.  A fictitious domain method for Dirichlet problem and applications , 1994 .

[22]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[23]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[24]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[25]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[26]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[27]  Silvia Bertoluzza Interior estimates for the wavelet Galerkin method , 1997 .

[28]  Tomáš Kozubek,et al.  ON SOLVING NON-SYMMETRIC SADDLE-POINT SYSTEMS ARISING FROM FICTITIOUS DOMAIN APPROACHES∗ , 2006 .

[29]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[30]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[31]  Ricardo H. Nochetto,et al.  Boundary value problems for partial differential equations and applications , 1993 .

[32]  Michał Kleiber,et al.  The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation , 1993 .

[33]  N. Wiener The Homogeneous Chaos , 1938 .

[34]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[35]  V. Totik,et al.  Moduli of smoothness , 1987 .

[36]  Giovanni Monegato,et al.  Truncated interpolation processes on unbounded intervals and their applications , 2006 .