Input-output functions of mammalian motoneurons.

Our intent in this review was to consider the relationship between the biophysical properties of motoneurons and the mechanisms by which they transduce the synaptic inputs they receive into changes in their firing rates. Our emphasis has been on experimental results obtained over the past twenty years, which have shown that motoneurons are just as complex and interesting as other central neurons. This work has shown that motoneurons are endowed with a rich complement of active dendritic conductances, and flexible control of both somatic and dendritic channels by endogenous neuromodulators. Although this new information requires some revision of the simple view of motoneuron input-output properties that was prevalent in the early 1980's (see sections 2.3 and 2.10), the basic aspects of synaptic transduction by motoneurons can still be captured by a relatively simple input-output model (see section 2.3, equations 1-3). It remains valid to describe motoneuron recruitment as a product of the total synaptic current delivered to the soma, the effective input resistance of the motoneuron and the somatic voltage threshold for spike initiation (equations 1 and 2). However, because of the presence of active channels activated in the subthreshold range, both the delivery of synaptic current and the effective input resistance depend upon membrane potential. In addition, activation of metabotropic receptors by achetylcholine, glutamate, noradrenaline, serotonin, substance P and thyrotropin releasing factor (TRH) can alter the properties of various voltage- and calcium-sensitive channels and thereby affect synaptic current delivery and input resistance. Once motoneurons are activated, their steady-state rate of repetitive discharge is linearly related to the amount of injected or synaptic current reaching the soma (equation 3). However, the slope of this relation, the minimum discharge rate and the threshold current for repetitive discharge are all subject to neuromodulatory control. There are still a number of unresolved issues concerning the control of motoneuron discharge by synaptic inputs. Under dynamic conditions, when synaptic input is rapidly changing, time- and activity-dependent changes in the state of ionic channels will alter both synaptic current delivery to the spike-generating conductances and the relation between synaptic current and discharge rate. There is at present no general quantitative expression for motoneuron input-output properties under dynamic conditions. Even under steady-state conditions, the biophysical mechanisms underlying the transfer of synaptic current from the dendrites to the soma are not well understood, due to the paucity of direct recordings from motoneuron dendrites. It seems likely that resolving these important issues will keep motoneuron afficiandoes well occupied during the next twenty years.

[1]  Simon C. Gandevia,et al.  Fatigue : neural and muscular mechanisms , 1995 .

[2]  L. Vyklický,et al.  Properties of NMDA receptors in rat spinal cord motoneurons , 1999, The European journal of neuroscience.

[3]  J. Feldman,et al.  Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin. , 1993, The Journal of physiology.

[4]  M D Binder,et al.  Analysis of effective synaptic currents generated by homonymous Ia afferent fibers in motoneurons of the cat. , 1988, Journal of neurophysiology.

[5]  B. Seebach,et al.  Changes in serotonin-induced potentials during spinal cord development. , 1993, Journal of neurophysiology.

[6]  D. Kernell High-Frequency Repetitive Firing of Cat Lumbosacral Motoneurones Stimulated by Long-Lasting Injected Currents , 1965 .

[7]  D. Kernell,et al.  Quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents , 1963, The Journal of physiology.

[8]  K. Mauritz,et al.  Membrane conductance course during spike intervals and repetitive firing in cat spinal motoneurones. , 1974, Brain research.

[9]  S. Keirstead,et al.  A quantitative analysis of the geometry of cat motoneurons innervating neck and shoulder muscles , 1985, The Journal of comparative neurology.

[10]  D. Wallis,et al.  Serotonin andl-norepinephrine as mediators of altered excitability in neonatal rat motoneurons studied in vitro , 1992, Neuroscience.

[11]  K. Kanda,et al.  Developmental alterations in NMDA receptor-mediated currents in neonatal rat spinal motoneurons , 1996, Neuroscience Letters.

[12]  C. Heckman,et al.  Adjustable Amplification of Synaptic Input in the Dendrites of Spinal Motoneurons In Vivo , 2000, The Journal of Neuroscience.

[13]  Z. Jiang,et al.  Presynaptic suppression of excitatory postsynaptic potentials in rat ventral horn neurons by muscarinic agonists , 1986, Brain Research.

[14]  S. Fung,et al.  Serotonin, norepinephrine and associated neuropeptides: effects on somatic motoneuron excitability. , 1996, Progress in brain research.

[15]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[16]  O Kiehn,et al.  Bistable firing properties of soleus motor units in unrestrained rats. , 1989, Acta physiologica Scandinavica.

[17]  O Hidaka,et al.  Role of calcium conductances on spike afterpotentials in rat trigeminal motoneurons. , 1997, Journal of neurophysiology.

[18]  B J Schmidt,et al.  NMDA Receptor‐mediated Oscillatory Properties: Potential Role in Rhythm Generation in the Mammalian Spinal Cord , 1998, Annals of the New York Academy of Sciences.

[19]  D. Kernell,et al.  Threshold current for repetitive impulse firing in motoneurones innervating muscle fibres of different fatigue sensitivity in the cat , 1981, Brain Research.

[20]  S. Grillner,et al.  Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. , 1989, Journal of neurophysiology.

[21]  T. Basarsky,et al.  Presynaptic spike broadening reduces junctional potential amplitude , 1989, Nature.

[22]  E. Henneman Relation between size of neurons and their susceptibility to discharge. , 1957, Science.

[23]  J. Kelly,et al.  Characterization of 5‐HT‐sensitive potassium conductances in neonatal rat facial motoneurones in vitro , 1998, The Journal of physiology.

[24]  H. Sapru,et al.  NMDA as well as non-NMDA receptors mediate the neurotransmission of inspiratory drive to phrenic motoneurons in the adult rat , 1996, Brain Research.

[25]  L. Jordan,et al.  TTX-resistant NMDA receptor-mediated voltage oscillations in mammalian lumbar motoneurons. , 1994, Journal of neurophysiology.

[26]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.

[27]  P. Schwindt,et al.  Effects of barium on cat spinal motoneurons studied by voltage clamp. , 1980, Journal of neurophysiology.

[28]  E E Fetz,et al.  Cross‐correlation assessment of synaptic strength of single Ia fibre connections with triceps surae motoneurones in cats. , 1987, The Journal of physiology.

[29]  N. Spruston,et al.  Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. , 1992, Journal of neurophysiology.

[30]  D. Bayliss,et al.  Mechanisms underlying excitatory effects of thyrotropin-releasing hormone on rat hypoglossal motoneurons in vitro. , 1992, Journal of neurophysiology.

[31]  Evidence for an involvement of NMDA and non-NMDA receptors in synaptic excitation of phrenic motoneurons in the rabbit , 1991, Neuroscience Letters.

[32]  B. Jacobs,et al.  5-HT and motor control: a hypothesis , 1993, Trends in Neurosciences.

[33]  R Iansek,et al.  An analysis of the cable properties of spinal motoneurones using a brief intracellular current pulse , 1973, The Journal of physiology.

[34]  P. Schwindt,et al.  Equivalence of synaptic and injected current in determining the membrane potential trajectory during motoneuron rhythmic firing. , 1973, Brain research.

[35]  J. Rekling,et al.  Excitatory effects of thyrotropin-releasing hormone (TRH) in hypoglossal motoneurons , 1990, Brain Research.

[36]  O Kiehn,et al.  Calcium spikes and calcium plateaux evoked by differential polarization in dendrites of turtle motoneurones in vitro. , 1993, The Journal of physiology.

[37]  J Tanji,et al.  Firing rate of individual motor units in voluntary contraction of abductor digiti minimi muscle in man. , 1973, Experimental neurology.

[38]  P Schwindt,et al.  Equivalence of amplified current flowing from dendrite to soma measured by alteration of repetitive firing and by voltage clamp in layer 5 pyramidal neurons. , 1996, Journal of neurophysiology.

[39]  R. Iansek,et al.  The amplitude, time course and charge of unitary excitatory post‐synaptic potentials evoked in spinal motoneurone dendrites , 1973, The Journal of physiology.

[40]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[41]  M. Umemiya,et al.  Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  D. Bayliss,et al.  Actions of norepinephrine on rat hypoglossal motoneurons. , 1995, Journal of neurophysiology.

[43]  K. Krnjević,et al.  EGTA and motoneuronal after‐potentials. , 1978, Journal of Physiology.

[44]  M. Maltenfort,et al.  Comparison of Effective Synaptic Currents Generated in Spinal Motoneurons by Activating Different Input Systems , 2000 .

[45]  P. C. Schwindt,et al.  The induction and modification of voltage-sensitive responses in cat neocortical nuerons by N-methyl-d-aspartate , 1986, Brain Research.

[46]  R Porter,et al.  The time course of minimal excitory post-synaptic potentials evoked in spinal motoneurones by group Ia afferent fibres. , 1971, The Journal of physiology.

[47]  S. Conradi Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. , 1969, Acta physiologica Scandinavica. Supplementum.

[48]  J. Feldman,et al.  Synaptic control of motoneuronal excitability. , 2000, Physiological reviews.

[49]  O. Kiehn,et al.  Selective depletion of spinal monoamines changes the rat soleus EMG from a tonic to a more phasic pattern. , 1996, The Journal of physiology.

[50]  Intracellular tetraethylammonium ions enhance group Ia excitatory post‐synaptic potentials evoked in cat motoneurones. , 1986, The Journal of physiology.

[51]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[52]  K. Mauritz,et al.  Mechanisms of accommodation to linearly rising currents in cat spinal motoneurons. , 1974, Journal of Neurophysiology.

[53]  M. Binder,et al.  Distribution of oligosynaptic group I input to the cat medial gastrocnemius motoneuron pool. , 1985, Journal of neurophysiology.

[54]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[55]  B. Keller,et al.  Calcium dynamics and buffering in motoneurones of the mouse spinal cord , 1999, The Journal of physiology.

[56]  L. Nowak,et al.  The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture. , 1988, The Journal of physiology.

[57]  E Jankowska,et al.  A comparison of peripheral and rubrospinal synaptic input to slow and fast twitch motor units of triceps surae , 1970, The Journal of physiology.

[58]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[59]  S. Grillner,et al.  N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  M. Binder,et al.  Experimental evaluation of input-output models of motoneuron discharge. , 1996, Journal of neurophysiology.

[61]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[62]  I. Forsythe,et al.  The dependence of motoneurone membrane potential on extracellular ion concentrations studied in isolated rat spinal cord. , 1988, The Journal of physiology.

[63]  M. Gorassini,et al.  Activation patterns of hindlimb motor units in the awake rat and their relation to motoneuron intrinsic properties. , 1999, Journal of neurophysiology.

[64]  C. D. De Luca,et al.  Behaviour of human motor units in different muscles during linearly varying contractions , 1982, The Journal of physiology.

[65]  A. Lundberg,et al.  Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones , 1971, The Journal of physiology.

[66]  C. Stevens,et al.  Synaptic noise and other sources of randomness in motoneuron interspike intervals. , 1968, Journal of neurophysiology.

[67]  Light and electron microscopical localisation of 5-HT-immunoreactive boutons in the rat trigeminal motor nucleus , 1991, Brain Research.

[68]  R K Powers,et al.  Effects of background noise on the response of rat and cat motoneurones to excitatory current transients. , 1996, The Journal of physiology.

[69]  S. Cullheim,et al.  A quantitative light microscopic study of the dendrites of cat spinal γ‐motoneurons after intracellular staining with horseradish peroxidase , 1981, The Journal of comparative neurology.

[70]  A. Monster,et al.  Isometric force production by motor units of extensor digitorum communis muscle in man. , 1977, Journal of neurophysiology.

[71]  F. Robinson,et al.  Distribution of rubrospinal synaptic input to cat triceps surae motoneurons. , 1993, Journal of neurophysiology.

[72]  B. Rudy,et al.  Diversity and ubiquity of K channels , 1988, Neuroscience.

[73]  J. Hounsgaard,et al.  Ca(2+)-activated nonselective cationic current (I(CAN)) in turtle motoneurons. , 1999, Journal of neurophysiology.

[74]  M D Binder,et al.  Computer simulations of the effects of different synaptic input systems on motor unit recruitment. , 1993, Journal of neurophysiology.

[75]  Y. Kang,et al.  Serotonergic modulation of the hyperpolarizing spike afterpotential in rat jaw-closing motoneurons by PKA and PKC. , 1999, Journal of neurophysiology.

[76]  Jack M. Winters,et al.  Biomechanics and Neural Control of Posture and Movement , 2011, Springer New York.

[77]  M. Binder,et al.  Peripheral and spinal mechanisms in the neural control of movement , 1999 .

[78]  R. Granit,et al.  Net depolarization and discharge rate of motoneurones, as measured by recurrent inhibition , 1961, The Journal of physiology.

[79]  J. Midtgaard Processing of information from different sources: spatial synaptic integration in the dendrites of vertebrate CNS neurons , 1994, Trends in Neurosciences.

[80]  Aron M. Gutman Bistability of Dendrites , 1991, Int. J. Neural Syst..

[81]  Y Sugiuchi,et al.  Structural Basis for Three‐Dimensional Coding in the Vestibulospinal Reflex Morphology of Single Vestibulospinal Axons in the Cervical Cord a , 1988, Annals of the New York Academy of Sciences.

[82]  L. Rowell,et al.  Exercise : regulation and integration of multiple systems , 1996 .

[83]  S. H. Chandler,et al.  NMDA receptor NR1 and NR2A/B subunit expression in trigeminal neurons during early postnatal development , 1999, The Journal of comparative neurology.

[84]  K. Fukushima,et al.  Vestibulospinal, reticulospinal and interstitiospinal pathways in the cat. , 1979, Progress in brain research.

[85]  H. Bras,et al.  The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. An ultrastructural analysis of the synaptic covering and the microenvironment , 1987, Neuroscience.

[86]  D. Kernell,et al.  Repetitive impulse firing: comparisons between neurone models based on 'voltage clamp equations' and spinal motoneurones. , 1973, Acta physiologica Scandinavica.

[87]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[88]  M D Binder,et al.  Computer simulation of the steady-state input-output function of the cat medial gastrocnemius motoneuron pool. , 1991, Journal of neurophysiology.

[89]  D. H. Paul The physiology of nerve cells , 1975 .

[90]  M. Binder,et al.  Functional identification of the input‐output transforms of motoneurones in the rat and cat , 1997, The Journal of physiology.

[91]  T. Takahashi Membrane currents in visually identified motoneurones of neonatal rat spinal cord. , 1990, The Journal of physiology.

[92]  B. Walmsley,et al.  HRP anatomy of group la afferent contacts on alpha motoneurones , 1979, Brain Research.

[93]  Dual-component excitatory amino acid-mediated responses in trigeminal motoneurons and their modulation by serotonin in vitro. , 1996, Journal of neurophysiology.

[94]  C. Heckman,et al.  Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. , 1996, Journal of neurophysiology.

[95]  P. Schwindt,et al.  Electrical properties of facial motoneurons in brainstem slices from guinea pig , 1989, Brain Research.

[96]  R K Powers,et al.  A variable-threshold motoneuron model that incorporates time- and voltage-dependent potassium and calcium conductances. , 1993, Journal of neurophysiology.

[97]  R K Powers,et al.  Effective synaptic current and motoneuron firing rate modulation. , 1995, Journal of neurophysiology.

[98]  S. Cullheim,et al.  Electron microscopic observations on the synaptic contacts of group Ia muscle spindle afferents in the cat lumbosacral spinal cord , 1983, Brain Research.

[99]  M. Binder,et al.  Summation of effective synaptic currents and firing rate modulation in cat spinal motoneurons. , 2000, Journal of neurophysiology.

[100]  J. Feldman,et al.  Distinct Subtypes of Metabotropic Glutamate Receptors Mediate Differential Actions on Excitability of Spinal Respiratory Motoneurons , 1999, The Journal of Neuroscience.

[101]  M. Umemiya,et al.  Inhibition of N‐ and P‐type calcium currents and the after‐hyperpolarization in rat motoneurones by serotonin. , 1995, The Journal of physiology.

[102]  B. Jacobs,et al.  Activity of cat locus coeruleus noradrenergic neurons during the defense reaction , 1990, Brain Research.

[103]  N. Dun,et al.  Serotonin via presynaptic 5-HT1 receptors attenuates synaptic transmission to immature rat motoneurons in vitro , 1991, Brain Research.

[104]  R K Wong,et al.  Intracellular QX-314 blocks the hyperpolarization-activated inward current Iq in hippocampal CA1 pyramidal cells. , 1995, Journal of neurophysiology.

[105]  J. Eccles,et al.  The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones , 1957, The Journal of physiology.

[106]  R. Harris-Warrick,et al.  5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. , 1992, Journal of neurophysiology.

[107]  R K Powers,et al.  Effective synaptic current can be estimated from measurements of neuronal discharge. , 1992, Journal of neurophysiology.

[108]  Randall K. Powers,et al.  How different afferent inputs control motoneuron discharge and the output of the motoneuron pool , 1993, Current Opinion in Neurobiology.

[109]  S. Vanner,et al.  Differences in somatic and dendritic specific membrane resistivity of spinal motoneurons: an electrophysiological study of neck and shoulder motoneurons in the cat. , 1988, Journal of neurophysiology.

[110]  J. Hounsgaard,et al.  Spatial integration of local transmitter responses in motoneurones of the turtle spinal cord in vitro. , 1994, The Journal of physiology.

[111]  J. Eccles,et al.  Distribution of recurrent inhibition among motoneurones , 1961, The Journal of physiology.

[112]  R. Nicoll,et al.  Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. , 1984, The Journal of physiology.

[113]  J. Holstege Ultrastructural evidence for GABAergic brain stem projections to spinal motoneurons in the rat , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[114]  H Hultborn,et al.  Short-term plasticity in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[115]  O. Kiehn,et al.  Prolonged firing in motor units: evidence of plateau potentials in human motoneurons? , 1997, Journal of neurophysiology.

[116]  J. Stein Progress in clinical neurophysiology Vol. 4. Cerebral motor control in man: Long loop mechanisms. Edited by J. E. Desmedt. S. Karger, Basel, 1979, 394 pp. $70.75 , 1980, Neuropsychologia.

[117]  S. H. Chandler,et al.  An iontophoretic analysis of the pharmacologic mechanisms responsible for trigeminal motoneuronal discharge during masticatory-like activity in the guinea pig. , 1990, Journal of neurophysiology.

[118]  F. Parmiggiani,et al.  Saturating summation of the afterhyperpolarization conductance in spinal motoneurones: A mechanism for ‘secondary range’ repetitive firing , 1978, Brain Research.

[119]  B. Gustafsson,et al.  Influence of stretch‐evoked synaptic potentials on firing probability of cat spinal motoneurones. , 1984, The Journal of physiology.

[120]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[121]  A. Nistri,et al.  Substance P and TRH share a common effector pathway in rat spinal motoneurones: an in vitro electrophysiological investigation , 1993, Neuroscience Letters.

[122]  I. Engberg,et al.  l-Glutamate and N-methyl-d-aspartate actions on membrane potential and conductance of cat abducens motoneurones , 1987, Neuroscience Letters.

[123]  O. Kiehn Plateau potentials and active integration in the ‘final common pathway’ for motor behaviour , 1991, Trends in Neurosciences.

[124]  R. Llinás,et al.  The spatial distribution of ionic conductances in normal and axotomized motorneurons , 1977, Neuroscience.

[125]  M. Fuortes,et al.  STEPS IN THE PRODUCTION OF MOTONEURON SPIKES , 1957, The Journal of general physiology.

[126]  S. H. Chandler,et al.  Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. , 1994, Journal of neurophysiology.

[127]  D. Kernell,et al.  The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones. , 1968, Brain research.

[128]  J. Rinzel,et al.  Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. , 1997, Journal of neurophysiology.

[129]  P. Schwindt,et al.  Membrane-potential trajectories underlying motoneuron rhythmic firing at high rates. , 1973, Journal of neurophysiology.

[130]  K. Walton,et al.  Electrophysiological properties of neonatal rat motoneurones studied in vitro. , 1986, The Journal of physiology.

[131]  R. Lape,et al.  Voltage-activated K+ currents of hypoglossal motoneurons in a brain stem slice preparation from the neonatal rat. , 1999, Journal of neurophysiology.

[132]  J. Fleshman,et al.  Recurrent inhibition in type-identified motoneurons. , 1981, Journal of neurophysiology.

[133]  A. Lindsay,et al.  Distribution of effective synaptic currents underlying recurrent inhibition in cat triceps surae motoneurons. , 1991, Journal of neurophysiology.

[134]  Are there Important Exceptions to the Size Principle of α-Motoneurone Recruitment? , 1995 .

[135]  D. Kernell,et al.  The duration of after-hyperpolarization in hindlimb alpha motoneurones of different sizes in the cat , 1980, Neuroscience Letters.

[136]  J. Jack,et al.  An electrical description of the motoneurone, and its application to the analysis of synaptic potentials , 1971, The Journal of physiology.

[137]  Multiple actions of iontophoretically applied serotonin on motorneurones in the turtle spinal cord in vitro. , 1996, Acta physiologica Scandinavica.

[138]  B. Walmsley,et al.  The time course of synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. , 1983, The Journal of physiology.

[139]  J. Champagnat,et al.  Cat spinal motoneurons exhibit topographic sensitivity to glutamate and glycine , 1979, Brain Research.

[140]  K Kanosue,et al.  The number of active motor units and their firing rates in voluntary contraction of human brachialis muscle. , 1979, The Japanese journal of physiology.

[141]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. , 1998, Journal of neurophysiology.

[142]  Pierre A Guertin,et al.  Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles , 1998, Neuroscience Letters.

[143]  Synaptic organization of defined motor-unit types in cat tibialis anterior. , 1980, Journal of neurophysiology.

[144]  S. Cullheim Relations between cell body size, axon diameter and axon conduction velocity of cat sciatic α-motoneurons stained with horseradish peroxidase , 1978, Neuroscience Letters.

[145]  R. Reinking,et al.  Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. , 1976, Journal of neurophysiology.

[146]  P. Harrison,et al.  Individual excitatory post‐synaptic potentials due to muscle spindle Ia afferents in cat triceps surae motoneurones. , 1981, The Journal of physiology.

[147]  R. Powers,et al.  Effects of large excitatory and inhibitory inputs on motoneuron discharge rate and probability. , 1999, Journal of neurophysiology.

[148]  A. G. Brown,et al.  Organization of the spinal cord , 1964 .

[149]  D. Kernell The Limits of Firing Frequency in Cat Lumbosacral Motoneurones Possessing Different Time Course of Afterhyperpolarization , 1965 .

[150]  L. Ziskind-Conhaim,et al.  NMDA receptors mediate poly- and monosynaptic potentials in motoneurons of rat embryos , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[151]  M. Binder,et al.  Intrinsic Properties of Motoneurons , 1995 .

[152]  J. Fleshman,et al.  Monosynaptic projections of individual spindle group II afferents to type-identified medial gastrocnemius motoneurons in the cat. , 1982, Journal of neurophysiology.

[153]  P. Schwindt,et al.  A persistent negative resistance in cat lumbar motoneurons , 1977, Brain Research.

[154]  C. Heckman,et al.  Paradoxical effect of QX-314 on persistent inward currents and bistable behavior in spinal motoneurons in vivo. , 1999, Journal of neurophysiology.

[155]  I Segev,et al.  Signal Transfer in Passive Dendrites with Nonuniform Membrane Conductance , 1999, The Journal of Neuroscience.

[156]  J. Eccles,et al.  The electrical properties of the motoneurone membrane , 1955, The Journal of physiology.

[157]  J. Fleshman,et al.  Rheobase, input resistance, and motor-unit type in medial gastrocnemius motoneurons in the cat. , 1981, Journal of neurophysiology.

[158]  S. Cullheim,et al.  5‐Hydroxytryptamine, substance P, and thyrotropin‐releasing hormone in the adult cat spinal cord segment L7: Immunohistochemical and chemical studies , 1990, Synapse.

[159]  C. Terzuolo,et al.  Membrane currents in spinal motoneurons associated with the action potential and synaptic activity. , 1962, Journal of neurophysiology.

[160]  D A Bayliss,et al.  Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[161]  J. Raymond,et al.  Radioautographic identification of [3H]glutamic acid labeled nerve endings in the cat oculomotor nucleus , 1982, Brain Research.

[162]  J. Kellerth,et al.  Electron microscopic studies of serially sectioned cat spinal α‐motoneurons. IV. Motoneurons innervating slow‐twitch (type s) units of the soleus muscle , 1979, The Journal of comparative neurology.

[163]  Distribution of effective synaptic currents in cat triceps surae motoneurons. VI. Contralateral pyramidal tract. , 1998, Journal of neurophysiology.

[164]  W. Crill,et al.  Specific membrane properties of cat motoneurones , 1974, The Journal of physiology.

[165]  H. Lüscher,et al.  Passive electrical properties of ventral horn neurons in rat spinal cord slices. , 1998, Journal of neurophysiology.

[166]  J. Rekling,et al.  Electrophysiological properties of hypoglossal motoneurons of guinea-pigs studied in vitro , 1989, Neuroscience.

[167]  M. Binder,et al.  Models of spike encoding and their use in the interpretation of motor unit recordings in man. , 1999, Progress in brain research.

[168]  W. Cameron,et al.  Morphology of cat phrenic motoneurons as revealed by intracellular injection of horseradish peroxidase , 1983, The Journal of comparative neurology.

[169]  A. Hodgkin,et al.  The effect of diameter on the electrical constants of frog skeletal muscle fibres , 1972 .

[170]  K. Walton,et al.  Ionic mechanisms underlying the firing properties of rat neonatal motoneurons studied in vitro , 1986, Neuroscience.

[171]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[172]  T. Sears,et al.  The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. , 1978, The Journal of physiology.

[173]  M J Halsted,et al.  N-methyl-D-aspartate receptors are transiently expressed in the developing spinal cord ventral horn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[174]  O. Kiehn,et al.  Bistability of alpha‐motoneurones in the decerebrate cat and in the acute spinal cat after intravenous 5‐hydroxytryptophan. , 1988, The Journal of physiology.

[175]  K. Krnjević,et al.  Intracellular injection of Ca2+ chelator does not affect spike repolarization of cat spinal motoneurons , 1988, Brain Research.

[176]  F. Plum Handbook of Physiology. , 1960 .

[177]  E. Neher,et al.  The use of fura-2 for estimating ca buffers and ca fluxes , 1995, Neuropharmacology.

[178]  J. Kellerth,et al.  Electrophysiological and morphological measurements in cat gastrocnemius and soleus α-motoneurones , 1984, Brain Research.

[179]  Michael J. O'Donovan,et al.  An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons , 1982, The Journal of Comparative Neurology.

[180]  B. Rudy Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. , 1981, The Journal of physiology.

[181]  J. Eccles,et al.  The recording of potentials from motoneurones with an intracellular electrode , 1952, The Journal of physiology.

[182]  J. Hounsgaard,et al.  Local facilitation of plateau potentials in dendrites of turtle motoneurones by synaptic activation of metabotropic receptors , 1999, The Journal of physiology.

[183]  R. E. Burke,et al.  Three‐Dimensional architecture of dendritic trees in type‐identified α‐motoneurons , 1987 .

[184]  Jaynie F. Yang,et al.  Self-sustained firing of human motor units , 1998, Neuroscience Letters.

[185]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[186]  D. Kernell The Adaptation and the Relation between Discharge Frequency and Current Strength of Cat Lumbosacral Motoneurones Stimulated by Long‐Lasting Injected Currents , 1965 .

[187]  K. Krnjević,et al.  Effects of 4-aminopyridine on the action potential and the after-hyperpolarization of cat spinal motoneurons. , 1986, Canadian journal of physiology and pharmacology.

[188]  J. Hounsgaard,et al.  Detection of a membrane shunt by DC field polarization during intracellular and whole cell recording. , 1997, Journal of neurophysiology.

[189]  Jacques Durand,et al.  NMDA Actions on Rat Abducens Motoneurons , 1991, The European journal of neuroscience.

[190]  R. Burke,et al.  Electrotonic characteristics of alpha motoneurones of varying size , 1971, The Journal of physiology.

[191]  P. Schwindt,et al.  Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. , 1982, Journal of neurophysiology.

[192]  J. Fleshman,et al.  Properties of single-fiber spindle group II EPSPs in triceps surae motoneurons. , 1980, Journal of neurophysiology.

[193]  K. Endo,et al.  Contra- and ipsilateral cortical and rubral effects on fast and slow spinal motoneurons of the cat , 1975, Brain Research.

[194]  J Durand,et al.  Synaptic Excitation Triggers Oscillations During NMDA Receptor Activation in Rat Abducens Motoneurons , 1993, The European journal of neuroscience.

[195]  W. Rymer,et al.  Motor-unit activation patterns in lengthening and isometric contractions of hindlimb extensor muscles in the decerebrate cat. , 1982, Journal of neurophysiology.

[196]  S J Redman,et al.  The synaptic current evoked in cat spinal motoneurones by impulses in single group 1a axons. , 1983, The Journal of physiology.

[197]  J. Hounsgaard,et al.  Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials , 1999, Neuroscience.

[198]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[199]  B. Gustafsson,et al.  Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course. First interval firing. , 1974, Acta physiologica Scandinavica.

[200]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. , 1998, Journal of neurophysiology.

[201]  D. Bayliss,et al.  Postnatal Development of Serotonergic Innervation, 5-HT1A Receptor Expression, and 5-HT Responses in Rat Motoneurons , 1997, The Journal of Neuroscience.

[202]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[203]  S. H. Chandler,et al.  NMDA-induced burst discharge in guinea pig trigeminal motoneurons in vitro. , 1995, Journal of neurophysiology.

[204]  L. Ziskind-Conhaim,et al.  Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons. , 1998, Journal of neurophysiology.

[205]  W. Vogel,et al.  Single voltage‐activated Na+ and K+ channels in the somata of rat motoneurones. , 1995, The Journal of physiology.

[206]  A. Light,et al.  The ultrastructure of group Ia afferent fiber synapses in the lumbosacral spinal cord of the cat , 1984, Brain Research.

[207]  Voltage threshold and excitability among variously sized cat hindlimb motoneurons. , 1983, Journal of neurophysiology.

[208]  D. Kernell,et al.  Input conductance, axonal conduction velocity and cell size among hindlimb motoneurones of the cat , 1981, Brain Research.

[209]  Patton Hd,et al.  Electrical activity of single spinal cord elements. , 1952 .

[210]  I Segev,et al.  Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. , 1988, Journal of neurophysiology.

[211]  W Rall,et al.  Dendritic location of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. , 1967, Journal of neurophysiology.

[212]  L. Mendell,et al.  Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[213]  E. Jankowska Interneuronal relay in spinal pathways from proprioceptors , 1992, Progress in Neurobiology.

[214]  R. Brownstone,et al.  Characterization of calcium currents in functionally mature mouse spinal motoneurons , 2000, The European journal of neuroscience.

[215]  G. Collingridge,et al.  Excitatory amino acid receptors in the vertebrate central nervous system. , 1989, Pharmacological reviews.

[216]  J. Clements,et al.  Cable properties of cat spinal motoneurones measured by combining voltage clamp, current clamp and intracellular staining. , 1989, The Journal of physiology.

[217]  T. Eken Spontaneous electromyographic activity in adult rat soleus muscle. , 1998, Journal of neurophysiology.

[218]  B Sakmann,et al.  Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[219]  W. Crill,et al.  Voltage‐sensitive outward currents in cat motoneurones. , 1980, The Journal of physiology.

[220]  W. Vogel,et al.  Properties and functions of Na(+)‐activated K+ channels in the soma of rat motoneurones. , 1996, The Journal of physiology.

[221]  L. Glenn Overestimation of the electrical length of neuron dendrites and synaptic electrotonic attenuation , 1988, Neuroscience Letters.

[222]  C A Del Negro,et al.  Ionic basis for serotonin-induced bistable membrane properties in guinea pig trigeminal motoneurons. , 1998, Journal of neurophysiology.

[223]  H. Bras,et al.  Stochastic Geometry and Electrotonic Architecture of Dendritic Arborization of Brain Stem Motoneuron , 1993, The European journal of neuroscience.

[224]  C. McBain,et al.  N-methyl-D-aspartic acid receptor structure and function. , 1994, Physiological reviews.

[225]  C. Knox,et al.  Cross-correlation functions for a neuronal model. , 1974, Biophysical journal.

[226]  J. Hounsgaard,et al.  Calcium conductance and firing properties of spinal motoneurones in the turtle. , 1988, The Journal of physiology.

[227]  B. Hille Ionic channels of excitable membranes , 2001 .

[228]  S. Fung,et al.  Serotonin depolarizes cat spinal motoneurons in situ and decreases motoneuron afterhyperpolarizing potentials , 1989, Brain Research.

[229]  W Rall,et al.  Matching dendritic neuron models to experimental data. , 1992, Physiological reviews.

[230]  D. Johnston,et al.  Voltage-dependent properties of dendrites that eliminate location-dependent variability of synaptic input. , 1999, Journal of neurophysiology.

[231]  Sergey M. Korogod,et al.  Geometry-induced features of current transfer in neuronal dendrites with tonically activated conductances , 1998, Biological Cybernetics.

[232]  D. Kernell,et al.  Size and remoteness: two relatively independent parameters of dendrites, as studied for spinal motoneurones of the cat. , 1989, The Journal of physiology.

[233]  J. Munson,et al.  Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. , 1985, Journal of neurophysiology.

[234]  E. Proshansky,et al.  Morphology of spinal motoneurones mediating a cutaneous spinal reflex in the cat. , 1980, The Journal of physiology.

[235]  Marc D. Binder,et al.  The Segmental motor system , 1990 .

[236]  E E Fetz,et al.  Relation between shapes of post‐synaptic potentials and changes in firing probability of cat motoneurones , 1983, The Journal of physiology.

[237]  R. G. Willison,et al.  Excitatory synaptic mechanisms , 1971 .

[238]  D. Bayliss,et al.  Modulation of neonatal rat hypoglossal motoneuron excitability by serotonin , 1992, Neuroscience Letters.

[239]  P. Gogan,et al.  The dendrites of single brain-stem motoneurons intracellularly labelled with horseradish peroxidase in the cat. Morphological and electrical differences , 1987, Neuroscience.

[240]  W Z Rymer,et al.  Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. , 1976, Journal of neurophysiology.

[241]  J. Hounsgaard,et al.  Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneurones , 1997, The Journal of physiology.

[242]  B. Gustafsson,et al.  Factors determining the variation of the afterhyperpolarization duration in cat lumbar α-motoneurons , 1985, Brain Research.

[243]  K. Krnjević,et al.  Injections of calcium ions into spinal motoneurones , 1972, The Journal of physiology.

[244]  M. Bellingham,et al.  Presynaptic depression of excitatory synaptic inputs to rat hypoglossal motoneurons by muscarinic M2 receptors. , 1996, Journal of neurophysiology.

[245]  S. Rossignol,et al.  Pharmacological Activation and Modulation of the Central Pattern Generator for Locomotion in the Cat a , 1998, Annals of the New York Academy of Sciences.

[246]  D. Kernell,et al.  Dendrites of cat's spinal motoneurones: relationship between stem diameter and predicted input conductance. , 1989, The Journal of physiology.

[247]  P. Schwindt,et al.  Nature of conductances underlying rhythmic firing in cat spinal motoneurons. , 1973, Journal of neurophysiology.

[248]  P. Schwindt,et al.  Properties of a persistent inward current in normal and TEA-injected motoneurons. , 1980, Journal of neurophysiology.

[249]  N. Spruston,et al.  Prolonged Sodium Channel Inactivation Contributes to Dendritic Action Potential Attenuation in Hippocampal Pyramidal Neurons , 1997, The Journal of Neuroscience.

[250]  S. Cullheim,et al.  A morphological study of the axons and recurrent axon collaterals of cat alpha‐motoneurones supplying different hind‐limb muscles. , 1978, The Journal of physiology.

[251]  W. Rymer,et al.  Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. , 1998, Journal of neurophysiology.

[252]  T. Brismar Slow mechanism for sodium permeability inactivation in myelinated nerve fibre of Xenopus laevis. , 1977, The Journal of physiology.

[253]  J. Hounsgaard,et al.  NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. , 1998, Journal of neurophysiology.

[254]  P Campadelli,et al.  The dynamic response of cat gastrocnemius motor units investigated by ramp‐current injection into their motoneurones. , 1987, The Journal of physiology.

[255]  P. M. Larkman,et al.  Ionic mechanisms mediating 5‐hydroxytryptamine‐ and noradrenaline‐evoked depolarization of adult rat facial motoneurones. , 1992, The Journal of physiology.

[256]  J. Mclarnon,et al.  Potassium currents in motoneurones , 1995, Progress in Neurobiology.

[257]  Y. Shinoda,et al.  Vestibular projections to the spinal cord: the morphology of single vestibulospinal axons. , 1988, Progress in brain research.

[258]  C. Heckman,et al.  Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. , 1999, Journal of neurophysiology.

[259]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[260]  K J Staley,et al.  Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. , 1992, Journal of neurophysiology.

[261]  M. Gurnell,et al.  Block by the neuropeptide TRH of an apparently novel K+ conductance of rat motoneurones , 1990, Neuroscience Letters.

[262]  M. Levine,et al.  Multiple effects of serotonin on membrane properties of trigeminal motoneurons in vitro. , 1997, Journal of neurophysiology.

[263]  P. Schwindt,et al.  Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. , 1988, Journal of neurophysiology.

[264]  G. Horcholle-Bossavit,et al.  Distribution of glycinergic terminals on lumbar motoneurons of the adult cat: an ultrastructural study , 1992, Brain Research.

[265]  P. Rose,et al.  Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat. , 1997, Journal of neurophysiology.

[266]  R. Burke Motor Units: Anatomy, Physiology, and Functional Organization , 1981 .

[267]  O Kiehn,et al.  Serotonin‐induced bistability of turtle motoneurones caused by a nifedipine‐sensitive calcium plateau potential. , 1989, The Journal of physiology.

[268]  J. Storm Potassium currents in hippocampal pyramidal cells. , 1990, Progress in brain research.

[269]  C. Heckman,et al.  Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool. , 1994, Journal of neurophysiology.

[270]  M. Binder,et al.  Multiple mechanisms of spike-frequency adaptation in motoneurones , 1999, Journal of Physiology-Paris.

[271]  D. Bayliss,et al.  Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[272]  H M Sakai,et al.  White-noise analysis in neurophysiology. , 1992, Physiological reviews.

[273]  P. Nelson,et al.  Some electrical measurements of motoneuron parameters. , 1970, Biophysical journal.

[274]  W Rall,et al.  Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. , 1992, Journal of neurophysiology.

[275]  H Hultborn,et al.  Synaptic activation of plateaus in hindlimb motoneurons of decerebrate cats. , 1998, Journal of neurophysiology.

[276]  T Brännström,et al.  Quantitative synaptology of functionally different types of cat medial gastrocnemius α‐motoneurons , 1993, The Journal of comparative neurology.

[277]  R K Powers,et al.  Amplification and linear summation of synaptic effects on motoneuron firing rate. , 2001, Journal of neurophysiology.

[278]  P. Schwindt,et al.  Role of a persistent inward current in motoneuron bursting during spinal seizures. , 1980, Journal of neurophysiology.

[279]  A. Vallbo,et al.  ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA. , 1965, Acta physiologica Scandinavica.

[280]  A. Reyes,et al.  Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons. , 1993, Journal of neurophysiology.

[281]  M. Kawato Cable properties of a neuron model with non-uniform membrane resistivity. , 1984, Journal of theoretical biology.

[282]  K. Appenteng,et al.  The morphology and electrical geometry of rat jaw‐elevator motoneurones. , 1991, The Journal of physiology.

[283]  Determination of afferent fibers mediating oligosynaptic group I input to cat medial gastrocnemius motoneurons. , 1985, Journal of neurophysiology.

[284]  W Z Rymer,et al.  Effects of acute dorsal spinal hemisection on motoneuron discharge in the medial gastrocnemius of the decerebrate cat. , 1988, Journal of neurophysiology.

[285]  J. Isaacson,et al.  NMDA and non-NMDA receptors are co-localized at excitatory synapses of rat hypoglossal motoneurons , 1997, Neuroscience Letters.

[286]  L M Jordan,et al.  Dendritic L‐type calcium currents in mouse spinal motoneurons: implications for bistability , 2000, The European journal of neuroscience.

[287]  Ole Kiehn,et al.  Neuromodulation of vertebrate motor neuron membrane properties , 1992, Current Opinion in Neurobiology.

[288]  R. Lipowsky,et al.  Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. , 1996, Journal of neurophysiology.

[289]  M. Gutnick,et al.  Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. , 1996, Journal of neurophysiology.

[290]  R E Burke,et al.  Horseradish peroxidase study of the spatial and electrotonic distribution of group Ia synapses on type‐identified ankle extensor motoneurons in the cat , 1996, The Journal of comparative neurology.

[291]  W. Crill,et al.  Voltage clamp of cat motoneurone somata: properties of the fast inward current. , 1980, The Journal of physiology.

[292]  B. Gustafsson,et al.  Relations among passive electrical properties of lumbar alpha‐motoneurones of the cat. , 1984, The Journal of physiology.

[293]  P. K. Rose,et al.  Non-linear summation of synaptic currents on spinal motoneurons: lessons from simulations of the behaviour of anatomically realistic models. , 1999, Progress in brain research.

[294]  W H Calvin,et al.  Three modes of repetitive firing and the role of threshold time course between spikes. , 1974, Brain research.

[295]  W. Crill,et al.  Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurones , 1974, The Journal of physiology.

[296]  R. Johansson,et al.  Changes in motoneurone firing rates during sustained maximal voluntary contractions. , 1983, The Journal of physiology.

[297]  Idan Segev,et al.  Factors that control the efficacy of group Ia synapses in alpha-motoneurons. , 1988, Journal de physiologie.

[298]  B. Gustafsson,et al.  Afterhyperpolarization conductance time course in lumbar motoneurones of the cat. , 1974, Acta physiologica Scandinavica.

[299]  J. M. Ritchie,et al.  Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. , 1992, The Journal of physiology.

[300]  G. A. Robinson,et al.  Adaptation of cat motoneurons to sustained and intermittent extracellular activation. , 1993, The Journal of physiology.

[301]  A. Taylor,et al.  Alpha and Gamma Motor Systems , 1995, Springer US.

[302]  D. Kernell Synaptic conductance changes and the repetitive impulse discharge of spinal motoneurones. , 1969, Brain research.

[303]  E. Anderson,et al.  Variation in IH, IIR, and ILEAK between acutely isolated adult rat dorsal root ganglion neurons of different size. , 1994, Journal of neurophysiology.

[304]  D. Levine,et al.  Physiological types and histochemical profiles in motor units of the cat gastrocnemius , 1973, The Journal of physiology.

[305]  G. Barrionuevo,et al.  Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[306]  J. Hounsgaard,et al.  Depolarization-induced facilitation of a plateau-generating current in ventral horn neurons in the turtle spinal cord. , 1997, Journal of neurophysiology.

[307]  J. Jack,et al.  The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. , 1981, The Journal of physiology.

[308]  P. Sah,et al.  Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons. , 1992, Journal of neurophysiology.

[309]  D Kleinfeld,et al.  Supralinear Summation of Synaptic Inputs by an Invertebrate Neuron: Dendritic Gain Is Mediated by an “Inward Rectifier” K+ Current , 1999, The Journal of Neuroscience.

[310]  R. Fyffe,et al.  Spatial distribution of recurrent inhibitory synapses on spinal motoneurons in the cat. , 1991, Journal of neurophysiology.

[311]  J. Barrett,et al.  Motoneuron dendrites: role in synaptic integration. , 1975, Federation proceedings.

[312]  R. Granit Muscular Afferents and Motor Control , 1966 .

[313]  E. Stefani,et al.  Resting potential and electrical properties of frog slow muscle fibres. Effect of different external solutions , 1969, The Journal of physiology.

[314]  M. Ouardouz,et al.  GYKI 52466 antagonizes glutamate responses but not NMDA and kainate responses in rat abducens motoneurones , 1991, Neuroscience Letters.

[315]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[316]  P. Kirkwood On the use and interpretation of cross-correlation measurements in the mammalian central nervous system , 1979, Journal of Neuroscience Methods.

[317]  R. Burke,et al.  Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons , 1987, The Journal of comparative neurology.

[318]  D. Kernell Functional properties of spinal motoneurons and gradation of muscle force. , 1983, Advances in neurology.

[319]  R. Yuste,et al.  Input Summation by Cultured Pyramidal Neurons Is Linear and Position-Independent , 1998, The Journal of Neuroscience.

[320]  J C Pearson,et al.  Distribution of 5‐hydroxytryptamine‐immunoreactive boutons on α‐motoneurons in the lumbar spinal cord of adult cats , 1998, The Journal of comparative neurology.

[321]  B. Gustafsson,et al.  An investigation of threshold properties among cat spinal alpha‐motoneurones. , 1984, The Journal of physiology.

[322]  H. L. Bryant,et al.  Spike initiation by transmembrane current: a white‐noise analysis. , 1976, The Journal of physiology.

[323]  A. I. Shapovalov Extrapyramidal monosynaptic and disynaptic control of mammalian alpha-motoneurons. , 1972, Brain research.

[324]  D. Kernell,et al.  Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents , 1966, The Journal of physiology.

[325]  A. G. Brown,et al.  Direct observations on the contacts made between Ia afferent fibres and alpha‐motoneurones in the cat's lumbosacral spinal cord. , 1981, The Journal of physiology.

[326]  T. Cope,et al.  Orderly recruitment tested across muscle boundaries. , 1999, Progress in brain research.

[327]  K. Beam,et al.  Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high voltage activated calcium channels , 1991, Neuron.

[328]  M D Binder,et al.  Computer simulations of motoneuron firing rate modulation. , 1993, Journal of neurophysiology.

[329]  M. Kuno,et al.  Non‐linear summation of unit synaptic potentials in spinal motoneurones of the cat , 1969, The Journal of physiology.

[330]  B R Botterman,et al.  Gradation of isometric tension by different activation rates in motor units of cat flexor carpi radialis muscle. , 1986, Journal of neurophysiology.

[331]  D. Kernell Rhythmic properties of motoneurones innervating muscle fibres of different speed in m. gastrocnemius medialis of the cat , 1979, Brain Research.

[332]  R. J. Sayer,et al.  Intracellular QX-314 inhibits calcium currents in hippocampal CA1 pyramidal neurons. , 1996, Journal of neurophysiology.

[333]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[334]  R K Powers,et al.  Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. , 1997, Journal of neurophysiology.

[335]  Y. W. Lee,et al.  Measurement of the Wiener Kernels of a Non-linear System by Cross-correlation† , 1965 .

[336]  B A Conway,et al.  Plateau potentials in alpha‐motoneurones induced by intravenous injection of L‐dopa and clonidine in the spinal cat. , 1988, The Journal of physiology.

[337]  E. Fetz,et al.  Control of forelimb muscle activity by populations of corticomotoneuronal and rubromotoneuronal cells. , 1989, Progress in brain research.

[338]  S. Grillner,et al.  A computer-based model for realistic simulations of neural networks. II. The segmental network generating locomotor rhythmicity in the lamprey. , 1992 .

[339]  J. Feldman,et al.  Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. , 1997, Journal of neurophysiology.

[340]  A. Gydikov,et al.  Physiological Characteristics of the Tonic and Phasic Motor Units in Human Muscles , 1973 .

[341]  B. Walmsley,et al.  Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses. , 1983, The Journal of physiology.

[342]  S. H. Chandler,et al.  Outward currents influencing bursting dynamics in guinea pig trigeminal motoneurons. , 1999, Journal of neurophysiology.

[343]  H. Hultborn,et al.  Distribution of recurrent inhibition within a motor nucleus. II. Amount of recurrent inhibition in motoneurones to fast and slow units. , 1988, Acta physiologica Scandinavica.

[344]  B. Gustafsson,et al.  Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course and algebraical summation. Adaptation and steady state firing. , 1974, Acta physiologica Scandinavica.

[345]  B. Keller,et al.  Endogenous calcium buffering in motoneurones of the nucleus hypoglossus from mouse , 1998, The Journal of physiology.

[346]  Transmitter regulation of plateau properties in turtle motoneurons. , 1998, Journal of neurophysiology.

[347]  W. Cameron,et al.  Quantitative analysis of the dendrites of cat phrenic motoneurons stained intracellularly with horseradish peroxidase , 1985, The Journal of comparative neurology.

[348]  D. Ulrich,et al.  Electronic structure of motoneurons in spinal cord slice cultures: a comparison of compartmental and equivalent cylinder models. , 1994, Journal of neurophysiology.

[349]  Vallbo Ab ACCOMMODATION RELATED TO INACTIVATION OF THE SODIUM PERMEABILITY IN SINGLE MYELINATED NERVE FIBRES FROM XENOPUS LAEVIS. , 1964 .

[350]  S. H. Chandler,et al.  Regulation of Intrinsic and Synaptic Properties of Neonatal Rat Trigeminal Motoneurons by Metabotropic Glutamate Receptors Materials and Methods , 2022 .

[351]  H. Sullivan Ionic Channels of Excitable Membranes, 2nd Ed. , 1992, Neurology.

[352]  R E Burke,et al.  Composite nature of the monosynaptic excitatory postsynaptic potential. , 1967, Journal of neurophysiology.

[353]  R K Powers,et al.  Spike frequency adaptation studied in hypoglossal motoneurons of the rat. , 1995, Journal of neurophysiology.

[354]  M D Binder,et al.  Analysis of Ia-inhibitory synaptic input to cat spinal motoneurons evoked by vibration of antagonist muscles. , 1991, Journal of neurophysiology.

[355]  P. Schwindt,et al.  Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. , 1989, Journal of neurophysiology.

[356]  M. Larkum,et al.  Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. , 1996, Journal of neurophysiology.

[357]  A. Lev-Tov,et al.  Synaptic excitation of alpha-motoneurons by dorsal root afferents in the neonatal rat spinal cord. , 1993, Journal of neurophysiology.

[358]  C. Koch,et al.  Amplification and linearization of distal synaptic input to cortical pyramidal cells. , 1994, Journal of neurophysiology.

[359]  K. Mauritz,et al.  Accommodation of cat spinal motoneurones to linearly rising currents before and during long-term changes of membrane potential. , 1974, Brain research.

[360]  D. Durand,et al.  The somatic shunt cable model for neurons. , 1984, Biophysical journal.

[361]  S. Grillner,et al.  Computer simulations of N-methyl-D-aspartate receptor-induced membrane properties in a neuron model. , 1991, Journal of neurophysiology.

[362]  M. Geffard,et al.  Immunocytochemical mapping of noradrenergic projections to the rat spinal cord with an antiserum against noradrenaline , 1992, Journal of neurocytology.

[363]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[364]  C. Paillart,et al.  Specific distribution of sodium channels in axons of rat embryo spinal motoneurones , 1999, The Journal of physiology.

[365]  P. Lagerbäck,et al.  Ultrastructural observations on beaded α-motoneuron dendrites , 1987 .

[366]  O. Kiehn,et al.  Functional role of plateau potentials in vertebrate motor neurons , 1998, Current Opinion in Neurobiology.

[367]  D. Kernell,et al.  Sizes of soma and stem dendrites in intracellularly labelled α-motoneurones of the cat , 1981, Brain Research.

[368]  Pankaj Sah,et al.  Ca2+-activated K+ currents in neurones: types, physiological roles and modulation , 1996, Trends in Neurosciences.

[369]  C. Heckman,et al.  The Physiological Control of Motoneuron Activity , 1996 .

[370]  S. Cullheim,et al.  Postnatal development of cat hind limb motoneurons. III: Changes in size of motoneurons supplying the triceps surae muscle , 1988, The Journal of comparative neurology.

[371]  P. G. Nelson,et al.  Accommodation to current ramps in motoneurons of fast and slow twitch motor units. , 1971, The International journal of neuroscience.

[372]  Y Harada,et al.  The calcium component of the action potential in spinal motoneurones of the rat. , 1983, The Journal of physiology.

[373]  G. Somjen,et al.  Excitability and inhibitability of motoneurons of different sizes. , 1965, Journal of neurophysiology.

[374]  J. Eccles,et al.  Intracellular recording from antidromically activated motoneurones , 1953, The Journal of physiology.

[375]  M. Neuber‐Hess,et al.  Morphology and frequency of axon terminals on the somata, proximal dendrites, and distal dendrites of dorsal neck motoneurons in the cat , 1991, The Journal of comparative neurology.

[376]  W H Calvin,et al.  Membrane-potential trajectories between spikes underlying motoneuron firing rates. , 1972, Journal of neurophysiology.

[377]  P. Rose Distribution of dendrites from biventer cervicis and complexus motoneurons stained intracellularly with horseradish peroxidase in the adult cat , 1981, The Journal of comparative neurology.