Vortical Inviscid Flows with Two-Way Solid-Fluid Coupling

Vortex methods increasingly receive attention from the computer graphics community for simple and direct modeling of complex flow phenomena such as turbulence. The coupling between free-form solids, represented by arbitrary surface meshes, and fluids simulated with vortex methods, leads to visually rich simulations. In this paper, we introduce a novel approach for simulating the interaction between solids and inviscid fluids for high-quality simulations using Lagrangian vortex particles. The key aspect of our method is simulating the creation of vorticity at a solid's surface. While previous vortex simulators only focus on modeling the solid as a boundary for the fluid, our approach allows the accurate simulation of two processes of visual interest. The first is the introduction of surface vorticity in the main flow as turbulence (vortex shedding). The second is the motion of the solid induced by fluid forces. We also introduce to computer graphics the concept of source panels to model nonturbulent flow around objects. To the best of our knowledge, this is the first work on two-way coupling of 3D solids and fluids using Lagrangian vortex methods in computer graphics.

[1]  Manuel N. Gamito,et al.  Two-dimensional simulation of gaseous phenomena using vortex particles , 1995 .

[2]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[3]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[4]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[5]  Sarah Tariq,et al.  Scalable fluid simulation using anisotropic turbulence particles , 2010, ACM Trans. Graph..

[6]  J. Hess,et al.  Higher order numerical solution of the integral equation for the two-dimensional neumann problem , 1973 .

[7]  Matthias Teschner,et al.  Interaction of fluids with deformable solids: Research Articles , 2004 .

[8]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[9]  Jerrold E. Marsden,et al.  Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: the case of arbitrary smooth body shape , 2008 .

[10]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[11]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[12]  Z. J. Wang,et al.  A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow , 2003 .

[13]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[14]  A. M. Kuethe,et al.  Foundations of aerodynamics: bases of aerodynamic design , 1986 .

[15]  Eric Darve,et al.  The black-box fast multipole method , 2009, J. Comput. Phys..

[16]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[17]  K. Gersten Introduction to Boundary-Layer Theory , 1998 .

[18]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[19]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[20]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[21]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[22]  Markus H. Gross,et al.  Interaction of fluids with deformable solids , 2004, Comput. Animat. Virtual Worlds.

[23]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[24]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[25]  Markus H. Gross,et al.  Synthetic turbulence using artificial boundary layers , 2009, ACM Trans. Graph..

[26]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[27]  Mathieu Desbrun,et al.  Smoothed particles: a new paradigm for animating highly deformable bodies , 1996 .

[28]  Tee Tai Lim,et al.  The vortex-shedding process behind two-dimensional bluff bodies , 1982, Journal of Fluid Mechanics.

[29]  Jeff D. Eldredge,et al.  Numerical simulation of the fluid dynamics of 2D rigid body motion with the vortex particle method , 2007, J. Comput. Phys..

[30]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[31]  L Prandtl,et al.  Motion of fluids with very little viscosity , 1928 .

[32]  Renzo Piva,et al.  Vorticity Generation on a Flat Surface in 3D Flows , 1996 .

[33]  Shin-Jin Kang,et al.  Procedural Synthesis using Vortex Particle Method for Fluid Simulation , 2009, Comput. Graph. Forum.

[34]  A. Larsen,et al.  Two dimensional discrete vortex method for application to bluff body aerodynamics , 1997 .

[35]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[36]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[37]  D. Rempfer On Boundary Conditions for Incompressible Navier-Stokes Problems , 2006 .

[38]  J. Wu Theory for Aerodynamic Force and Moment in Viscous Flows , 1981 .

[39]  J. Wu,et al.  Vorticity Dynamics on Boundaries , 1996 .

[40]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[41]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[42]  Filip Sadlo,et al.  Visualization Tools for Vorticity Transport Analysis in Incompressible Flow , 2006, IEEE Transactions on Visualization and Computer Graphics.

[43]  Seung Woo Lee,et al.  Baroclinic Turbulence with Varying Density and Temperature , 2012, IEEE Transactions on Visualization and Computer Graphics.

[44]  Vicki Porter,et al.  A vortex code for flow over rigid or flexible bluff bodies , 2002 .

[45]  Qiushi Li,et al.  Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design , 2007 .

[46]  Stéphane Bordas,et al.  Advances in Applied Mechanics , 2000, Nature.