Orientable arithmetic matroids

Abstract The theory of matroids has been generalized to oriented matroids and, recently, to arithmetic matroids. We want to give a definition of “oriented arithmetic matroid” and prove some properties like the “uniqueness of orientation”.

[1]  François Jaeger,et al.  Tutte polynomials and link polynomials , 1988 .

[2]  Günter M. Ziegler,et al.  Oriented Matroids , 2017, Handbook of Discrete and Computational Geometry, 2nd Ed..

[3]  B. M. Fulk MATH , 1992 .

[4]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[5]  Corrado De Concini,et al.  Topics in Hyperplane Arrangements, Polytopes and Box-Splines , 2010 .

[6]  Louis H. Kauffman,et al.  A Tutte polynomial for signed graphs , 1989, Discret. Appl. Math..

[7]  Roberto Pagaria Combinatorics of toric arrangements , 2017, Rendiconti Lincei - Matematica e Applicazioni.

[8]  Luca Moci A Tutte polynomial for toric arrangements , 2009 .

[9]  Stephen B. Maurer Matroid basis graphs. II , 1973 .

[10]  Randolph B. Tarrier,et al.  Groups , 1973 .

[11]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[12]  C. Procesi,et al.  On the geometry of toric arrangements , 2005 .

[13]  Nathan Bowler,et al.  Matroids over partial hyperstructures , 2017, Advances in Mathematics.

[14]  Jim Lawrence,et al.  Oriented matroids and multiply ordered sets , 1982 .

[15]  Morwen Thistlethwaite,et al.  A spanning tree expansion of the jones polynomial , 1987 .

[16]  Emanuele Delucchi,et al.  Orlik-Solomon type presentations for the cohomology algebra of toric arrangements , 2019, Transactions of the American Mathematical Society.

[17]  Alex Fink,et al.  Matroids Over a Ring , 2012 .

[18]  Matthias Lenz Representations of Weakly Multiplicative Arithmetic Matroids are Unique , 2017, Annals of Combinatorics.

[19]  Luca Moci,et al.  The multivariate arithmetic Tutte polynomial , 2012 .

[20]  M. Vergne,et al.  Vector partition functions and index of transversally elliptic operators , 2008, 0808.2545.

[21]  Matthias Lenz,et al.  On powers of Plücker coordinates and representability of arithmetic matroids , 2017, Adv. Appl. Math..