Mobile Genetic Elements

Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the fi rst part of this chapter, we review the classifi cation and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modifi ed their contribution as molecular tools.

[1]  R. Durbin,et al.  Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Flavell,et al.  Analysis of plant diversity with retrotransposon-based molecular markers , 2011, Heredity.

[3]  Matthew T. Palmer,et al.  Selection of Retroviral Reverse Transcription Primer Is Coordinated with tRNA Biogenesis , 2003, Journal of Virology.

[4]  M. Frith,et al.  Incorporating sequence quality data into alignment improves DNA read mapping , 2010, Nucleic acids research.

[5]  K. Anamthawat-jónsson,et al.  Retrotransposon BARE-1 is a major, dispersed component of the barley (Hordeum vulgare L.) genome , 1996, Plant Molecular Biology.

[6]  Kulmala,et al.  Genome size variation in Hordeum spontaneum populations , 1999, Genome.

[7]  Peter F. Hallin,et al.  Ten years of bacterial genome sequencing: comparative-genomics-based discoveries , 2006, Functional & Integrative Genomics.

[8]  A. Schulman,et al.  IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques , 1999, Theoretical and Applied Genetics.

[9]  Ryan A. Rapp,et al.  Phylogenetic determination of the pace of transposable element proliferation in plants: copia and LINE-like elements in Gossypium. , 2008, Genome.

[10]  Savilahti,et al.  Retrotransposon BARE-1: expression of encoded proteins and formation of virus-like particles in barley cells , 1999, The Plant journal : for cell and molecular biology.

[11]  S. Chadha,et al.  Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). , 2005, Genome.

[12]  A. Schulman,et al.  A major gene for grain cadmium accumulation in oat (Avena sativa L.). , 2007, Genome.

[13]  Patricia Siguier,et al.  ISfinder: the reference centre for bacterial insertion sequences , 2005, Nucleic Acids Res..

[14]  S. F. Grice In the beginning": initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. , 2003 .

[15]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.

[16]  P Starlinger,et al.  Nomenclature of transposable elements in prokaryotes. , 1979, Gene.

[17]  Andrew J Flavell,et al.  A microarray-based high throughput molecular marker genotyping method: the tagged microarray marker (TAM) approach. , 2003, Nucleic acids research.

[18]  Paul D. Shaw,et al.  The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis , 2010, BMC Evolutionary Biology.

[19]  W. Powell,et al.  Copia-SSR: A simple marker technique which can be used on total genomic DNA , 1999 .

[20]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[21]  A. Schulman,et al.  A doubled haploid rye linkage map with a QTL affecting α-amylase activity , 2011, Journal of Applied Genetics.

[22]  J. Bennetzen,et al.  Nested Retrotransposons in the Intergenic Regions of the Maize Genome , 1996, Science.

[23]  P. Siguier,et al.  The new IS1595 family, its relation to IS1 and the frontier between insertion sequences and transposons. , 2009, Research in microbiology.

[24]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.

[25]  A. Flavell,et al.  The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution , 2004, Genetica.

[26]  A. Schulman,et al.  IRAP and REMAP for retrotransposon-based genotyping and fingerprinting , 2006, Nature Protocols.

[27]  M. Knox,et al.  Polymorphism of insertion sites of Ty1-copia class retrotransposons and its use for linkage and diversity analysis in pea , 1998, Molecular and General Genetics MGG.

[28]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[29]  Martin Kircher,et al.  High‐throughput DNA sequencing – concepts and limitations , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  Robert A. Edwards,et al.  Transposases are the most abundant, most ubiquitous genes in nature , 2010, Nucleic acids research.

[31]  J. Mak,et al.  Primer tRNAs for reverse transcription , 1997, Journal of virology.

[32]  J. S. Heslop-Harrison,et al.  The Ty1-copia group of retrotransposons in plants: genomic organisation, evolution, and use as molecular markers , 2004, Genetica.

[33]  V. Lefebvre,et al.  LTR-retrotransposons Tnt1 and T135 markers reveal genetic diversity and evolutionary relationships of domesticated peppers , 2009, Theoretical and Applied Genetics.

[34]  P. Siguier,et al.  ISsaga is an ensemble of web-based methods for high throughput identification and semi-automatic annotation of insertion sequences in prokaryotic genomes , 2011, Genome Biology.

[35]  Jacques Mahillon,et al.  Insertion Sequences revisited , 2002 .

[36]  A. Schulman,et al.  Active retrotransposons are a common feature of grass genomes. , 2001, Plant physiology.

[37]  Pryavahiny Kichenaradja,et al.  ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes , 2009, Nucleic Acids Res..

[38]  N. Okada,et al.  Molecular evidence from retroposons that whales form a clade within even-toed ungulates , 1997, Nature.

[39]  M. Van Sluys,et al.  Characterization of new IS elements and studies of their dispersion in two subspecies of Leifsonia xyli , 2008, BMC Microbiology.

[40]  Eviatar Nevo,et al.  Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum , 1999, Plant Cell.

[41]  Fred Dyda,et al.  Integrating prokaryotes and eukaryotes: DNA transposases in light of structure , 2010, Critical reviews in biochemistry and molecular biology.

[42]  H. Hirochika,et al.  Applications of retrotransposons as genetic tools in plant biology. , 2001, Trends in plant science.

[43]  R. Wise,et al.  An anchored AFLP- and retrotransposon-based map of diploid Avena. , 2000, Genome.

[44]  MICROSATELLITE MARKER DEVELOPMENT, MAPPING AND APPLICATIONS IN RICE GENETICS AND BREEDING , 1997 .

[45]  Beat Keller,et al.  Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. , 2007, Genome research.

[46]  David S. Wishart,et al.  Circular genome visualization and exploration using CGView , 2005, Bioinform..

[47]  Eugene Y Chan,et al.  Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery. , 2009, Methods in molecular biology.

[48]  A. Flavell,et al.  Sequence-specific amplification polymorphisms (SSAPs): a multi-locus approach for analyzing transposon insertions , 2006, Nature Protocols.

[49]  R. J. Herrera,et al.  Alu Elements and the Human Genome , 2004, Genetica.

[50]  Ofer Peleg,et al.  Cassandra retrotransposons carry independently transcribed 5S RNA , 2008, Proceedings of the National Academy of Sciences.

[51]  M. Maroof,et al.  Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. Morais-Cecílio,et al.  Genomic analysis of Grapevine Retrotransposon 1 (Gret1) in Vitis vinifera , 2005, Theoretical and Applied Genetics.

[53]  K. Mysore,et al.  Reverse genetics in medicago truncatula using Tnt1 insertion mutants. , 2011, Methods in molecular biology.

[54]  T. Ellis,et al.  Heterogeneity of the internal structure of PDR1, a family of Ty1/copia-like retrotransposons in pea , 1999, Molecular and General Genetics MGG.

[55]  E Nevo,et al.  Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  I. Milne,et al.  Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data , 2010, Theoretical and Applied Genetics.

[57]  Christopher D Town,et al.  A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R , 2008, BMC Plant Biology.

[58]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[59]  D. Choi,et al.  Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements , 2011, BMC Genomics.

[60]  B. Baum,et al.  Genetic diversity among barley cultivars assessed by sequence-specific amplification polymorphism , 2005, Theoretical and Applied Genetics.

[61]  Ryan A. Rapp,et al.  Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants , 2009, Proceedings of the National Academy of Sciences.

[62]  M. Knox,et al.  High-throughput retrotransposon-based fluorescent markers: improved information content and allele discrimination , 2009, Plant Methods.

[63]  M. Nelson,et al.  Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. , 1994, Nucleic acids research.

[64]  H. Okamoto,et al.  Efficient insertion mutagenesis of Arabidopsis by tissue culture-induced activation of the tobacco retrotransposon Tto1. , 2000, The Plant journal : for cell and molecular biology.

[65]  A. Schulman,et al.  Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques , 2003, Molecular Genetics and Genomics.

[66]  M. Pavelek,et al.  Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers , 2011, Theoretical and Applied Genetics.

[67]  Keith M. Derbyshire,et al.  The outs and ins of transposition: from Mu to Kangaroo , 2003, Nature Reviews Molecular Cell Biology.

[68]  Kanako O. Koyanagi,et al.  Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. , 2007, Genome research.

[69]  Vincent Burrus,et al.  Shaping bacterial genomes with integrative and conjugative elements. , 2004, Research in microbiology.

[70]  Andreas Graner,et al.  Genic microsatellite markers in plants: features and applications. , 2005, Trends in biotechnology.

[71]  P. Gustafson,et al.  Genome merger: from sequence rearrangements in triticale to their elimination in wheat–rye addition lines , 2010, Theoretical and Applied Genetics.

[72]  P. Šmarda,et al.  Correlated evolution of LTR retrotransposons and genome size in the genus eleocharis , 2010, BMC Plant Biology.

[73]  Emmanuel Guiderdoni,et al.  Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library , 2007, Plant Molecular Biology.

[74]  Pierre Sourdille,et al.  Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. , 2010, Plant biotechnology journal.

[75]  M. Van Montagu,et al.  Transposon Display identifies individual transposable elements in high copy number lines. , 2002, The Plant journal : for cell and molecular biology.

[76]  Gaspar Malone,et al.  IRAP and REMAP assessments of genetic similarity in rice , 2010, Journal of Applied Genetics.

[77]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[78]  C. Feuillet,et al.  Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. , 2006, The Plant journal : for cell and molecular biology.

[79]  P. Smýkal Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification , 2006, Journal of Applied Genetics.

[80]  R. Hellens,et al.  A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis , 1990, Plant Molecular Biology.

[81]  A. Schulman,et al.  The genome sizes of Hordeum species show considerable variation. , 1996, Genome.

[82]  A. Schulman,et al.  iPBS: a universal method for DNA fingerprinting and retrotransposon isolation , 2010, Theoretical and Applied Genetics.

[83]  P. Schulze-Lefert,et al.  A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. , 1998, Nucleic acids research.

[84]  A. Flavell,et al.  Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. , 1998, The Plant journal : for cell and molecular biology.

[85]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[86]  M. Morgante,et al.  Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. , 1999, The Plant journal : for cell and molecular biology.

[87]  A. Schulman,et al.  Mapping of major spot-type and net-type net-blotch resistance genes in the Ethiopian barley line CI 9819. , 2006, Genome.

[88]  J. Pina,et al.  The diversification of Citrus clementina Hort. ex Tan., a vegetatively propagated crop species. , 2001, Molecular phylogenetics and evolution.

[89]  G. Hong,et al.  Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Pavel Neumann,et al.  Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula , 2007, BMC Genomics.

[91]  The tagged microarray marker (TAM) method for high-throughput detection of single nucleotide and indel polymorphisms , 2007, Nature Protocols.

[92]  K. Devos Grass genome organization and evolution. , 2010, Current opinion in plant biology.

[93]  P. Schulze-Lefert,et al.  A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. , 2000, Genome research.

[94]  G. P. Bernet,et al.  Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus , 2003, Theoretical and Applied Genetics.

[95]  J. S. Heslop-Harrison,et al.  Genome constitution and classification using retrotransposon-based markers in the orphan crop banana , 2005, Journal of Plant Biology.

[96]  A. Flavell,et al.  Rapid isolation of plant Ty1-copia group retrotransposon LTR sequences for molecular marker studies. , 1999, The Plant journal : for cell and molecular biology.

[97]  K. McLean,et al.  Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) , 1997, Molecular and General Genetics MGG.