Efficient Implementation of Smoothed Particle Hydrodynamics (SPH) with Plane Sweep Algorithm

Neighbour search (NS) is the core of any implementations of smoothed particle hydrodynamics (SPH). In this paper,we present an efficient neighbour search method based on the plane sweep (PW) algorithm with N being the number of SPH particles. The resulting method, dubbed the PWNS method, is totally independent of grids (i.e., purely meshfree) and capable of treating variable smoothing length, arbitrary particle distribution and heterogenous kernels. Several state-of-the-art data structures and algorithms, e.g., the segment tree and the Morton code, are optimized and implemented. By simply allowingmultiple lines to sweep the SPH particles simultaneously from different initial positions, a parallelization of the PWNS method with satisfactory speedup and load-balancing can be easily achieved. That is, the PWNS SPH solver has a great potential for large scale fluid dynamics simulations.

[1]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[2]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[3]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[4]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[5]  William H. Press,et al.  Dynamic mass exchange in doubly degenerate binaries I , 1990 .

[6]  Efficient Massive Parallelisation for Incompressible Smoothed Particle Hydrodynamics with 10^8 Particles , 2013 .

[7]  Changhao Yan,et al.  Feature-Scale Simulations of Particulate Slurry Flows in Chemical Mechanical Polishing by Smoothed Particle Hydrodynamics , 2014 .

[8]  Chak-Kuen Wong,et al.  Worst-case analysis for region and partial region searches in multidimensional binary search trees and balanced quad trees , 1977, Acta Informatica.

[9]  Sachin S. Sapatnekar,et al.  Handbook of Algorithms for Physical Design Automation , 2008 .

[10]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[11]  Jihun Yu,et al.  Reconstructing surfaces of particle-based fluids using anisotropic kernels , 2010, SCA '10.

[12]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[13]  Hermann Tropf,et al.  Multimensional Range Search in Dynamically Balanced Trees , 1981, Angew. Inform..

[14]  David Le Touzé,et al.  Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method , 2014, J. Comput. Phys..

[15]  J. Bentley A survey of techniques for fixed radius near neighbor searching. , 1975 .

[16]  Christian Ulrich,et al.  Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems , 2013 .

[17]  Bart Adams,et al.  Meshless Approximation Methods and Applications in Physics Based Modeling and Animation , 2009, Eurographics.

[18]  J. Monaghan,et al.  A turbulence model for Smoothed Particle Hydrodynamics , 2009, 0911.2523.

[19]  Robert A. Dalrymple,et al.  SPHysics - development of a free-surface fluid solver - Part 2: Efficiency and test cases , 2012, Comput. Geosci..

[20]  Ivo F. Sbalzarini,et al.  Fast neighbor lists for adaptive-resolution particle simulations , 2012, Comput. Phys. Commun..

[21]  Benedict D. Rogers,et al.  SPHysics - development of a free-surface fluid solver - Part 1: Theory and formulations , 2012, Comput. Geosci..

[22]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[25]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[26]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[27]  Arthur Veldman,et al.  A Volume-of-Fluid based simulation method for wave impact problems , 2005 .

[28]  J. Monaghan SPH without a Tensile Instability , 2000 .

[29]  Paul W. Cleary,et al.  Flow modelling in casting processes , 2002 .

[30]  Mark de Berg,et al.  Computational geometry: algorithms and applications, 3rd Edition , 1997 .

[31]  Javier Bonet,et al.  Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems , 2007 .

[32]  Yannis Manolopoulos,et al.  Spatial Databases , 2004 .

[33]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[34]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[35]  L. Hernquist,et al.  TREESPH: A Unification of SPH with the Hierarchical Tree Method , 1989 .

[36]  Anant Agarwal,et al.  Performance Tradeoffs in Multithreaded Processors , 1992, IEEE Trans. Parallel Distributed Syst..

[37]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[38]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[39]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[40]  Jonathan Schaeffer,et al.  Parallel Sorting by Regular Sampling , 1992, J. Parallel Distributed Comput..

[41]  Gary L. Miller,et al.  Deterministic parallel list ranking , 1988, Algorithmica.

[42]  Nikolaus A. Adams,et al.  A generalized wall boundary condition for smoothed particle hydrodynamics , 2012, J. Comput. Phys..

[43]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[44]  DAVID P. HELMBOLD,et al.  Modeling Speedup (n) Greater than n , 1990, IEEE Trans. Parallel Distributed Syst..

[45]  James Christopher Wyllie,et al.  The Complexity of Parallel Computations , 1979 .

[46]  Nikolaus A. Adams,et al.  A multi-phase SPH method for macroscopic and mesoscopic flows , 2006, J. Comput. Phys..

[47]  Agnès Voisard,et al.  Spatial Databases: With Application to GIS , 2001 .

[48]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[49]  John Dubinski,et al.  Parallel TreeSPH , 1997 .

[50]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[51]  Rudolf Bayer,et al.  The Universal B-Tree for Multidimensional Indexing: general Concepts , 1997, WWCA.

[52]  Renato Pajarola,et al.  Interactive SPH simulation and rendering on the GPU , 2010, SCA '10.