Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection

SUMMARY The role of gamma amino butyric acid (GABA) release and inhibitory neurotransmission in regulating most behaviors remains unclear. The vesicular GABA transporter (VGAT) is required for the storage of GABA in synaptic vesicles and provides a potentially useful probe for inhibitory circuits. However, specific pharmacologic agents for VGAT are not available, and VGAT knockout mice are embryonically lethal, thus precluding behavioral studies. We have identified the Drosophila ortholog of the vesicular GABA transporter gene (which we refer to as dVGAT), immunocytologically mapped dVGAT protein expression in the larva and adult and characterized a dVGATminos mutant allele. dVGAT is embryonically lethal and we do not detect residual dVGAT expression, suggesting that it is either a strong hypomorph or a null. To investigate the function of VGAT and GABA signaling in adult visual flight behavior, we have selectively rescued the dVGAT mutant during development. We show that reduced GABA release does not compromise the active optomotor control of wide-field pattern motion. Conversely, reduced dVGAT expression disrupts normal object tracking and figure–ground discrimination. These results demonstrate that visual behaviors are segregated by the level of GABA signaling in flies, and more generally establish dVGAT as a model to study the contribution of GABA release to other complex behaviors.

[1]  D. Sattelle,et al.  Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of Drosophila melanogaster , 1996, Cell and Tissue Research.

[2]  Hendrik Eckert,et al.  The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata , 1983 .

[3]  B. Giros,et al.  Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases , 1997, FEBS letters.

[4]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[5]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[6]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[7]  P. Distler,et al.  Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: II. local multiglomerular interneurons , 1997, The Journal of comparative neurology.

[8]  N. Maidment,et al.  Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine , 2006, Molecular Psychiatry.

[9]  M. Rosbash,et al.  Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila , 2008, Nature Neuroscience.

[10]  R. Hosono,et al.  Mutations Affecting Acetylcholine Levels in the Nematode Caenorhabditis elegans , 1987, Journal of neurochemistry.

[11]  R. Kelly,et al.  Redistribution of synaptic vesicles and their proteins in temperature-sensitive shibire(ts1) mutant Drosophila. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Dario L. Ringach,et al.  Flies see second-order motion , 2008, Current Biology.

[13]  Alexander Borst,et al.  Synapse distribution on VCH, an inhibitory, motion‐sensitive interneuron in the fly visual system , 1997, The Journal of comparative neurology.

[14]  Claude Desplan,et al.  The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.

[15]  A. Borst,et al.  Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. , 1996, Journal of neurophysiology.

[16]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[17]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[18]  Johannes J. Letzkus,et al.  In developing Drosophila neurones the production of γ‐amino butyric acid is tightly regulated downstream of glutamate decarboxylase translation and can be influenced by calcium , 2003, Journal of neurochemistry.

[19]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[20]  E. Pothos,et al.  Vesicular Transport Regulates Monoamine Storage and Release but Is Not Essential for Amphetamine Action , 1997, Neuron.

[21]  Y. Hamasaka,et al.  γ‐Aminobutyric acid (GABA) signaling components in Drosophila: Immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter , 2007, The Journal of comparative neurology.

[22]  A. Borst,et al.  Neural networks in the cockpit of the fly , 2002, Journal of Comparative Physiology A.

[23]  Irina Sinakevitch,et al.  Chemical neuroanatomy of the fly's movement detection pathway , 2004, The Journal of comparative neurology.

[24]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[25]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[26]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[27]  F. Zettler,et al.  Immunocytochemical demonstration ofγ-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system , 1986, Journal of Comparative Physiology A.

[28]  Hui-yun Chang,et al.  A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. , 2005, Journal of neurobiology.

[29]  Common projection areas of 5-HT- and GABA-like immunoreactive fibers in the visual system of the honeybee , 1986, Brain Research.

[30]  J. Hildebrand,et al.  Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta , 1987, Cell and Tissue Research.

[31]  P. Salvaterra,et al.  Two Drosophila nervous system antigens, Nervana 1 and 2, are homologous to the beta subunit of Na+,K(+)-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Sattelle,et al.  Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Acheta domesticus. , 1998, Learning & memory.

[33]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[34]  Michael H Dickinson,et al.  Role of calcium in the regulation of mechanical power in insect flight. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Gasnier The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids , 2004, Pflügers Archiv.

[36]  H. Manev,et al.  Developmental role of GABAB(1) receptors in Drosophila. , 2005, Brain research. Developmental brain research.

[37]  A. Borst,et al.  A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[39]  A. Borst,et al.  Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. , 1993, Journal of neurophysiology.

[40]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[41]  Ronald L. Davis,et al.  GABAA Receptor RDL Inhibits Drosophila Olfactory Associative Learning , 2007, Neuron.

[42]  Ian A. Meinertzhagen,et al.  Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System , 2008, PloS one.

[43]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[44]  E. Meyer,et al.  Insect optic lobe neurons identifiable with monoclonal antibodies to GABA , 2004, Histochemistry.

[45]  F. Jackson,et al.  Presynaptic Glutamic Acid Decarboxylase Is Required for Induction of the Postsynaptic Receptor Field at a Glutamatergic Synapse , 2000, Neuron.

[46]  Alexander Borst,et al.  The role of GABA in detecting visual motion , 1990, Brain Research.

[47]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[48]  Y. Kondoh,et al.  Neural computation of motion in the fly visual system: quadratic nonlinearity of responses induced by picrotoxin in the HS and CH cells. , 1995, Journal of neurophysiology.

[49]  M. Heisenberg,et al.  The structural brain mutant Vacuolar medulla of Drosophila melanogaster with specific behavioral defects and cell degeneration in the adult. , 1986, Journal of neurogenetics.

[50]  S. Oehler,et al.  Minos as a Genetic and Genomic Tool in Drosophila melanogaster , 2005, Genetics.

[51]  D. Aunis,et al.  Evidence for a γ‐hydroxybutyrate (GHB) uptake by rat brain synaptic vesicles , 2002, Journal of neurochemistry.

[52]  I. Meinertzhagen,et al.  Synaptic organization of the mushroom body calyx in Drosophila melanogaster , 2002, The Journal of comparative neurology.

[53]  Martin Egelhaaf,et al.  On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.

[54]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[55]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[56]  N. Maidment,et al.  Orphanin FQ/Nociceptin Modulation of Mesolimbic Dopamine Transmission Determined by Microdialysis , 1999, Journal of neurochemistry.

[57]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[58]  Yan Zhu,et al.  Peripheral Visual Circuits Functionally Segregate Motion and Phototaxis Behaviors in the Fly , 2009, Current Biology.

[59]  N. Maidment,et al.  Drosophila Vesicular Monoamine Transporter Mutants Can Adapt to Reduced or Eliminated Vesicular Stores of Dopamine and Serotonin , 2009, Genetics.

[60]  E. Buchner,et al.  A cysteine-string protein is expressed in retina and brain of Drosophila. , 1990, Journal of neurogenetics.

[61]  N. Strausfeld,et al.  Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa , 2003, The Journal of comparative neurology.

[62]  G. Laurent,et al.  GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system , 1996, The Journal of comparative neurology.

[63]  Y. Sharma,et al.  PPTGAL, a convenient Gal4 P‐element vector for testing expression of enhancer fragments in drosophila , 2002, Genesis.

[64]  E. Jorgensen,et al.  The GABA nervous system in C. elegans , 2004, Trends in Neurosciences.

[65]  M. Capecchi,et al.  Cleft palate in mice with a targeted mutation in the gamma-aminobutyric acid-producing enzyme glutamic acid decarboxylase 67. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Schousboe Pharmacological and Functional Characterization of Astrocytic GABA Transport: A Short Review , 2000, Neurochemical Research.

[67]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  M Egelhaaf,et al.  Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. , 1993, Journal of neurophysiology.

[69]  M. Heisenberg,et al.  Vision in Drosophila: Genetics of Microbehavior , 2011 .

[70]  H. Bülthoff,et al.  Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala , 1988, Biological Cybernetics.

[71]  Cole Gilbert,et al.  Membrane Conductance Changes Associated with the Response of Motion Sensitive Insect Visual Neurons , 1990, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[72]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[74]  D. O'Dowd,et al.  Fast Synaptic Currents in Drosophila Mushroom Body Kenyon Cells Are Mediated by α-Bungarotoxin-Sensitive Nicotinic Acetylcholine Receptors and Picrotoxin-Sensitive GABA Receptors , 2003, The Journal of Neuroscience.

[75]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[76]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[77]  Michael B. Reiser,et al.  Dynamic properties of large-field and small-field optomotor flight responses in Drosophila , 2007, Journal of Comparative Physiology A.

[78]  W. Oertel,et al.  Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster , 1988, Cell and Tissue Research.

[79]  A. Simon,et al.  A screen for neurotransmitter transporters expressed in the visual system of Drosophila melanogaster identifies three novel genes , 2007, Developmental neurobiology.

[80]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[81]  Y. Hamasaka,et al.  GABA modulates Drosophila circadian clock neurons via GABAB receptors and decreases in calcium. , 2005, Journal of neurobiology.

[82]  K. Obata,et al.  GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase , 1999, Neuroscience Research.

[83]  R. Kelly,et al.  Biogenesis of synaptic vesicle-like structures in a pheochromocytoma cell line PC-12 , 1990, The Journal of cell biology.

[84]  J J Milde,et al.  Oculomotor control in calliphorid flies: GABAergic organization in heterolateral inhibitory pathways , 1995, The Journal of comparative neurology.

[85]  C Giovanni Galizia,et al.  Processing of Odor Mixtures in the Drosophila Antennal Lobe Reveals both Global Inhibition and Glomerulus-Specific Interactions , 2007, The Journal of Neuroscience.

[86]  I A Meinertzhagen,et al.  Experience-Dependent Developmental Plasticity in the Optic Lobe of Drosophila melanogaster , 1997, The Journal of Neuroscience.

[87]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[88]  Aaron DiAntonio,et al.  Increased Expression of the Drosophila Vesicular Glutamate Transporter Leads to Excess Glutamate Release and a Compensatory Decrease in Quantal Content , 2004, The Journal of Neuroscience.

[89]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.

[90]  B. Kanner Structure and Function of Sodium-coupled GABA and Glutamate Transporters , 2006, The Journal of Membrane Biology.

[91]  Alexander Borst,et al.  Cholinergic and GABAergic pathways in fly motion vision , 2001, BMC Neuroscience.

[92]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[93]  H. Manev,et al.  γ-Aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: Adult RNA interference and pharmacological evidence , 2003, Proceedings of the National Academy of Sciences of the United States of America.