Missing Data Imputation using Optimal Transport
暂无分享,去创建一个
Julie Josse | Marco Cuturi | Claire Boyer | Boris Muzellec | Marco Cuturi | J. Josse | Boris Muzellec | Claire Boyer
[1] Madeleine Udell,et al. Why Are Big Data Matrices Approximately Low Rank? , 2017, SIAM J. Math. Data Sci..
[2] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[3] Marco Cuturi,et al. Computational Optimal Transport , 2019 .
[4] David Gries,et al. From the Editors of this special issue , 2001, Inf. Process. Lett..
[5] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..
[6] Trevor J. Hastie,et al. Matrix completion and low-rank SVD via fast alternating least squares , 2014, J. Mach. Learn. Res..
[7] Ruslan Salakhutdinov,et al. Importance Weighted Autoencoders , 2015, ICLR.
[8] Stef van Buuren,et al. Flexible Imputation of Missing Data , 2012 .
[9] Nicole A. Lazar,et al. Statistical Analysis With Missing Data , 2003, Technometrics.
[10] Léon Bottou,et al. Wasserstein Generative Adversarial Networks , 2017, ICML.
[11] Han Zhang,et al. Improving GANs Using Optimal Transport , 2018, ICLR.
[12] P. Rigollet,et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.
[13] Jes Frellsen,et al. MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets , 2019, ICML.
[14] Tengyao Wang,et al. High‐dimensional principal component analysis with heterogeneous missingness , 2019, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[15] Jerome P. Reiter,et al. Multiple Imputation of Missing Categorical and Continuous Values via Bayesian Mixture Models With Local Dependence , 2014, 1410.0438.
[16] Hossein Mobahi,et al. Learning with a Wasserstein Loss , 2015, NIPS.
[17] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[18] Julie Josse,et al. Miss , 2020, Definitions.
[19] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[20] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[21] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[22] J. Josse,et al. missMDA: A Package for Handling Missing Values in Multivariate Data Analysis , 2016 .
[23] Mihaela van der Schaar,et al. GAIN: Missing Data Imputation using Generative Adversarial Nets , 2018, ICML.
[24] Stef van Buuren,et al. MICE: Multivariate Imputation by Chained Equations in R , 2011 .
[25] Nicolas Courty,et al. Learning with minibatch Wasserstein : asymptotic and gradient properties , 2020, AISTATS.
[26] Judea Pearl,et al. Graphical Models for Processing Missing Data , 2018, Journal of the American Statistical Association.
[27] Arnaud Doucet,et al. Fast Computation of Wasserstein Barycenters , 2013, ICML.
[28] Gabriel Peyré,et al. Learning Generative Models with Sinkhorn Divergences , 2017, AISTATS.
[29] Russ B. Altman,et al. Missing value estimation methods for DNA microarrays , 2001, Bioinform..
[30] Max Welling,et al. Auto-Encoding Variational Bayes , 2013, ICLR.
[31] Dmitry Vetrov,et al. Variational Autoencoder with Arbitrary Conditioning , 2018, ICLR.
[32] Dan Jackson,et al. What Is Meant by "Missing at Random"? , 2013, 1306.2812.
[33] Yoshua Bengio,et al. Generative Adversarial Nets , 2014, NIPS.
[34] Alain Trouvé,et al. Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.
[35] Peter Bühlmann,et al. MissForest - non-parametric missing value imputation for mixed-type data , 2011, Bioinform..