Numerical Algorithms - Methods for Computer Vision, Machine Learning, and Graphics
暂无分享,去创建一个
[1] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[2] Yurii Nesterov,et al. Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.
[3] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[4] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[5] Stig Larsson,et al. Partial differential equations with numerical methods , 2003, Texts in applied mathematics.
[6] Russell C. Eberhart,et al. A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.
[7] W. T. Tutte. How to Draw a Graph , 1963 .
[8] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[9] Kaare Brandt Petersen,et al. The Matrix Cookbook , 2006 .
[10] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[11] Yoram Singer,et al. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..
[12] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[13] Alexander M. Bronstein,et al. Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.
[14] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[15] Jitse Niesen,et al. Algorithm 919: A Krylov Subspace Algorithm for Evaluating the ϕ-Functions Appearing in Exponential Integrators , 2009, TOMS.
[16] David F. Gleich,et al. Tall and skinny QR factorizations in MapReduce architectures , 2011, MapReduce '11.
[17] Michael M. Kazhdan,et al. Interactive and anisotropic geometry processing using the screened Poisson equation , 2011, ACM Trans. Graph..
[18] Roberto Manduchi,et al. Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
[19] Dorothea Heiss-Czedik,et al. An Introduction to Genetic Algorithms. , 1997, Artificial Life.
[20] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[21] E. Grinspun. Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.
[22] S. Wang,et al. Decomposition Method with a Variable Parameter for a Class of Monotone Variational Inequality Problems , 2001 .
[23] Manolis I. A. Lourakis,et al. Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications , 2000, ECCV.
[24] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[25] M. Turk,et al. Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.
[26] Doug L. James,et al. Skinning mesh animations , 2005, ACM Trans. Graph..
[27] James T. Kajiya,et al. The rendering equation , 1998 .
[28] Takeo Kanade,et al. Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[29] Michael Elad,et al. Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .
[30] William G. Poole,et al. A geometric theory for the QR, LU and power iterations. , 1973 .
[31] D. Anderson,et al. Algorithms for minimization without derivatives , 1974 .
[32] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[33] C. W. Clenshaw,et al. A method for numerical integration on an automatic computer , 1960 .
[34] Charles W. Groetsch,et al. Lanczos' Generalized Derivative , 1998 .
[35] Heinz H. Bauschke,et al. What is... a Fenchel Conjugate , 2012 .
[36] W. Cheney,et al. Proximity maps for convex sets , 1959 .
[37] M. Géradin,et al. Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .
[38] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[39] I. Daubechies,et al. Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.
[40] Martial Hebert,et al. Smoothing-based Optimization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[41] Alston S. Householder,et al. Unitary Triangularization of a Nonsymmetric Matrix , 1958, JACM.
[42] Michael Frankfurter,et al. Numerical Recipes In C The Art Of Scientific Computing , 2016 .
[43] Mirela Ben-Chen,et al. Complex Barycentric Coordinates with Applications to Planar Shape Deformation , 2009, Comput. Graph. Forum.
[44] W. Givens. Computation of Plain Unitary Rotations Transforming a General Matrix to Triangular Form , 1958 .
[45] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[46] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[47] Matthias Hein,et al. Sparse recovery by thresholded non-negative least squares , 2011, NIPS.
[48] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[49] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[50] Alexander G. Ramm,et al. A scheme for stable numerical differentiation , 2006 .
[51] Andrew P. Witkin,et al. Untangling cloth , 2003, ACM Trans. Graph..
[52] Sheldon Axler,et al. Down With Determinants ! , 2002 .
[53] Sébastien Bubeck,et al. Theory of Convex Optimization for Machine Learning , 2014, ArXiv.
[54] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[55] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[56] Daniela Fischer. Differential Equations Dynamical Systems And An Introduction To Chaos , 2016 .
[57] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[58] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[59] Michael A. Saunders,et al. LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..
[60] James Kennedy,et al. Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.
[61] K. Kiwiel. Methods of Descent for Nondifferentiable Optimization , 1985 .
[62] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[63] Michael T. Heath,et al. Scientific Computing: An Introductory Survey , 1996 .
[64] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[65] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[66] Marc Alexa,et al. As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.
[67] Kilian Q. Weinberger,et al. Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.
[68] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[69] James M. Ortega,et al. The LLT and QR methods for symmetric tridiagonal matrices , 1963, Comput. J..
[70] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[71] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[72] Tom Duff,et al. Matrix animation and polar decomposition , 1992 .
[73] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[74] H. Uzawa,et al. Preference, production, and capital: Iterative methods for concave programming , 1989 .
[75] Jernej Barbic,et al. Real-time large-deformation substructuring , 2011, ACM Trans. Graph..
[76] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[77] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[78] Joel A. Tropp,et al. Column subset selection, matrix factorization, and eigenvalue optimization , 2008, SODA.
[79] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[80] Nancy S. Pollard,et al. Real-time gradient-domain painting , 2008, ACM Trans. Graph..
[81] Marco Dorigo,et al. Distributed Optimization by Ant Colonies , 1992 .
[82] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[83] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[84] J. Miller. Numerical Analysis , 1966, Nature.
[85] F. John. The ultrahyperbolic differential equation with four independent variables , 1938 .
[86] Stephen P. Boyd,et al. Applications of second-order cone programming , 1998 .
[87] Dorin Comaniciu,et al. Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..
[88] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[89] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[90] Marcin Novotni,et al. Gomputing geodesic distances on triangular meshes , 2002 .
[91] E. Fehlberg,et al. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .
[92] J. Dongarra,et al. Generalized QR factorization and its applications , 1992 .
[93] A. Knyazev. A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .
[94] C. Lanczos. Applied Analysis , 1961 .
[95] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[96] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[97] William Kahan,et al. Pracniques: further remarks on reducing truncation errors , 1965, CACM.
[98] R. D. Richtmyer,et al. Survey of the stability of linear finite difference equations , 1956 .
[99] Gene H. Golub,et al. Matrix computations , 1983 .
[100] L. Trefethen,et al. Stiffness of ODEs , 1993 .
[101] Shai Shalev-Shwartz,et al. Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..
[102] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[103] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[104] L. Dixon,et al. Automatic differentiation of algorithms , 2000 .
[105] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[106] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[107] Jack Bresenham,et al. Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..
[108] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[109] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[110] Eitan Grinspun,et al. Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.
[111] N. Higham. Computing the polar decomposition with applications , 1986 .
[112] Joost van de Weijer,et al. Local mode filtering , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.
[113] S. Dumais. Latent Semantic Analysis. , 2005 .
[114] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[115] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[116] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[117] E. Polak,et al. Note sur la convergence de méthodes de directions conjuguées , 1969 .
[118] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[119] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[120] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.