暂无分享,去创建一个
[1] Gilles Zémor,et al. Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[2] Daniel A. Spielman,et al. Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[3] M. Freedman,et al. Z(2)-Systolic Freedom and Quantum Codes , 2002 .
[4] Aram W. Harrow,et al. Sparse Quantum Codes From Quantum Circuits , 2014, IEEE Transactions on Information Theory.
[5] Matthew B. Hastings,et al. Quantum Codes from High-Dimensional Manifolds , 2016, ITCS.
[6] L. Landau. Fault-tolerant quantum computation by anyons , 2003 .
[7] Noga Alon,et al. Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.
[8] Pavel Panteleev,et al. Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.
[9] Tali Kaufman,et al. Decodable quantum LDPC codes beyond the √n distance barrier using high dimensional expanders , 2020, SIAM Journal on Computing.
[10] Matthew B. Hastings,et al. Homological product codes , 2013, STOC.
[11] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[12] Matthew B. Hastings,et al. Quantum systems on non-k-hyperfinite complexes: a generalization of classical statistical mechanics on expander graphs , 2013, Quantum Inf. Comput..
[13] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[14] F. Chung. On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.
[15] Michael H. Freedman,et al. Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..
[16] Matthew B. Hastings,et al. Weight reduction for quantum codes , 2016, Quantum Inf. Comput..
[17] Tali Kaufman,et al. Quantum LDPC codes with Ω(√n logkn) distance, for any k , 2020, ArXiv.
[18] Noga Alon,et al. Explicit construction of linear sized tolerant networks , 1988, Discret. Math..
[19] Gilles Zémor,et al. Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.
[20] Sanjeev Mahajan,et al. Derandomizing Approximation Algorithms Based on Semidefinite Programming , 1999, SIAM J. Comput..
[21] D. Poulin. Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.
[22] Gleb Kalachev,et al. Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.