Fiber bundle codes: breaking the n1/2 polylog(n) barrier for Quantum LDPC codes

We present a quantum LDPC code family that has distance Ω(N/polylog(N)) and Θ̃(N) logical qubits. This is the first quantum LDPC code construction which achieves distance greater than N polylog(N). The construction is based on generalizing the homological product of codes to a fiber bundle.

[1]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[2]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[3]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[4]  Aram W. Harrow,et al.  Sparse Quantum Codes From Quantum Circuits , 2014, IEEE Transactions on Information Theory.

[5]  Matthew B. Hastings,et al.  Quantum Codes from High-Dimensional Manifolds , 2016, ITCS.

[6]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[7]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[8]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[9]  Tali Kaufman,et al.  Decodable quantum LDPC codes beyond the √n distance barrier using high dimensional expanders , 2020, SIAM Journal on Computing.

[10]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[11]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[12]  Matthew B. Hastings,et al.  Quantum systems on non-k-hyperfinite complexes: a generalization of classical statistical mechanics on expander graphs , 2013, Quantum Inf. Comput..

[13]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[14]  F. Chung On concentrators, superconcentrators, generalizers, and nonblocking networks , 1979, The Bell System Technical Journal.

[15]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[16]  Matthew B. Hastings,et al.  Weight reduction for quantum codes , 2016, Quantum Inf. Comput..

[17]  Tali Kaufman,et al.  Quantum LDPC codes with Ω(√n logkn) distance, for any k , 2020, ArXiv.

[18]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[19]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[20]  Sanjeev Mahajan,et al.  Derandomizing Approximation Algorithms Based on Semidefinite Programming , 1999, SIAM J. Comput..

[21]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[22]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.