Self-assembled BLMs: biomembrane models and biosensor applications

Abstract In the last few years, there have been a number of research papers on self-assemblies of molecules as ‘advanced’ or ‘smart’ materials. The inspiration for this exciting research, without question, comes from the biological world, where, for example, the lipid bilayer of the cell membrane is the most important self-assembling system. Although the first report on self-assembled bilayer lipid membranes (BLMs) in vitro was published in 1962, interface science, including surface and colloid science, has been dealing with these interfacial self-assemblies of amphiphilic molecules since Robert Hooke's time (1672). BLMs have been used in a number of applications, ranging from basic membrane biophysics studies to the conversion of solar energy via water photolysis, and to biosensor development using supported bilayer lipid membranes (s-BLMs and sb-BLMs). This paper briefly summarizes the past research on the use of BLMs as models of biological membranes and describes some details of our current work on supported BLMs as practical biosensors. Additionally, experiments carried out in close collaboration with others on s-BLMs and sb-BLMs are presented.

[1]  O. Shirai,et al.  Ion transfer through a liquid membrane or a bilayer lipid membrane in the presence of sufficient electrolytes , 1995 .

[2]  H. Tien,et al.  Biophysical aspects of agar-gel supported bilayer lipid nembranes: a new method for forming and studying planar bilayer lipid membranes , 1996 .

[3]  W C Davis,et al.  A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). , 1995, Bio Systems.

[4]  H. Tien,et al.  Immobilization of ferrocene on a BLM system : an amperometric sensor of Fe(CN)6-3/-4 ions , 1993 .

[5]  H. Ti Tien,et al.  Iodide sensitive sensor based on a supported bilayer lipid membrane containing a cluster form of carbon (fullerene C60) , 1996 .

[6]  Ying Zhang,et al.  Photoelectric response of bilayer lipid membrane doped with some metallochlorophylls , 1996 .

[7]  H. Ti Tien,et al.  A new method for the determination of electrical properties of supported bilayer lipid membranes by cyclic voltammetry , 1996 .

[8]  Rajinder S. Sethi,et al.  Transducer aspects of biosensors , 1991 .

[9]  W. M. Albers,et al.  PREPARATION OF EXTENDED DI(4-PYRIDYL)THIOPHENE OLIGOMERS , 1995 .

[10]  M. Zviman,et al.  Formation of a bilayer lipid membrane on rigid supports: an approach to BLM-based biosensors. , 1991, Biosensors & bioelectronics.

[11]  H. Ti Tien,et al.  Self‐assembled lipid bilayers for biosensors and molecular electronic devices , 1990 .

[12]  P. Bianco,et al.  Control of the electron transfer reactions between c-type cytochromes and lipid-modified electrodes , 1994 .

[13]  H. Tien,et al.  Channel-closing activity of porins from Escherichia coli in bilayer lipid membranes. , 1986, Biochimica et biophysica acta.

[14]  K. Maeda,et al.  Membrane oscillations and ion transport , 1994 .

[15]  H. Ti Tien,et al.  Bilayer lipid membranes (BLM) : theory and practice , 1974 .

[16]  H. Ti Tien,et al.  Thin-film microsystem applicable in (bio)chemical sensors , 1994 .

[17]  L. Cun,et al.  Platinum-supported Bilayer Lipid Membranes modified by ferrocene and its derivatives , 1992 .

[18]  Jerome S. Schultz,et al.  Handbook of Chemical and Biological Sensors , 1996 .

[19]  H. Tien Bilayer lipid membrane‐based electrochemical biosensors , 1988 .

[20]  Huipin Yuan,et al.  An agarose-stabilized BLM: a new method for forming bilayer lipid membranes , 1996 .

[21]  E. Wang,et al.  Charge transfer across a conducting polypyrrole membrane separated by two electrolyte solutions , 1990 .

[22]  R. Rolandi,et al.  Photovoltages in bilayer lipid membranes incorporating cadmium sulfide particles , 1990 .

[23]  S. Micelli,et al.  Pore formation in lipid bilayer membranes made of phosphatidylinositol and oxidized cholesterol followed by means of alternating current. , 1996, Biophysical journal.

[24]  A. Bravo,et al.  δ‐Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers , 1995 .

[25]  E. Wang,et al.  Electrochemical study of ion transfer across the polypyrrole membrane between two electrolyte solutions , 1990 .

[26]  H. Tien Self-assembled lipid bilayers as a smart material for nanotechnology , 1995 .

[27]  R. Stromberg,et al.  Techniques of surface and colloid chemistry and physics , 1972 .

[28]  H. Tien,et al.  ELECTROCHEMICAL TRANSDUCTION OF AN IMMUNOLOGICAL REACTION VIA S-BLMS , 1995 .

[29]  W. Helfrich,et al.  Collapse of giant phosphatidylcholine vesicles , 1996 .

[30]  J. Mountz,et al.  PHOTOEFFECTS OF PIGMENTED LIPID MEMBRANES IN A MICROPOROUS FILTER , 1978 .

[31]  J. Janata,et al.  Use of poly(octadec-1-ene-maleic anhydride) for interfacing bilayer membranes to solid supports in sensor applications , 1990 .

[32]  T. Tjärnhage,et al.  Liposome and proteoliposome fusion onto solid substrates, studied using atomic force microscopy, quartz crystal microbalance and surface plasmon resonance. Biological activities of incorporated components , 1995 .

[33]  U. Gräfe,et al.  Protonophoric activities of helioferin and pamamycin, lipophilic tertiary amine antibiotics from Mycogone rosea and Streptomyces aurantiacus , 1996 .

[34]  H. Gerischer Solar photoelectrolysis with semiconductor electrodes , 1979 .

[35]  A. Gliozzi,et al.  Transport in Biomembranes: Model Systems and Reconstitution , 1982 .

[36]  P. Paquin,et al.  Formation of asymmetrical planar lipid bilayer membranes from characterized monolayers. , 1983, Journal of biochemical and biophysical methods.

[37]  H. Tien,et al.  Electrical oscillations in polypyrrole-lecithin bilayer lipid membranes , 1988 .

[38]  J. Rácek Cell-Based Biosensors , 1995 .

[39]  S. Kalinowski,et al.  A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes , 1995 .

[40]  H. Gaub,et al.  Immobilization of enzymes on Langmuir-Blodgett films via a membrane-bound receptor. Possible applications for amperometric biosensors , 1991 .

[41]  A. Sheludko,et al.  Thin liquid films , 1967 .

[42]  U. Sleytr Immobilised Macromolecules: Application Potentials , 1992, Springer Series in Applied Biology.

[43]  T. Hianik,et al.  STABILIZATION OF BILAYER LIPID MEMBRANES ON SOLID SUPPORTS BY TREHALOSE , 1996 .

[44]  H. Tien,et al.  Polymer-modified bilayer lipid membranes: the polypyrrole—lecithin system , 1988 .

[45]  H. Ti Tien,et al.  Crown Ether-Modified Bilayer Lipid Membranes on Solid Support as Ion Sensors , 1995 .

[46]  B. Kagan,et al.  Use of lipid bilayer membranes to detect pore formation by toxins. , 1994, Methods in enzymology.

[47]  R. Rolandi,et al.  Photovoltage generation in bilayer lipid membrane-cadmium sulfide junctions , 1992 .

[48]  H. Monbouquette,et al.  Direct electron transfer to Escherichia coli fumarate reductase in self-assembled alkanethiol monolayers on gold electrodes , 1993 .

[49]  H. Tien Cyclic voltammetry of bilayer lipid membranes , 1984 .

[50]  P. Yager,et al.  Formation of Planar Solvent-Free Phospholipid Bilayers by Langmuir-Blodgett Transfer of Monolayers to Micromachined Apertures in Silicon , 1995 .

[51]  S. Upadhyay,et al.  Electrically excitable surfactant layer liquid membranes , 1993 .

[52]  F. B. Diniz,et al.  The Effect of Electron Transfer on the Potential of Certain Electronically Conducting Membranes , 1988 .