Origin and preservation of archaeal intact polar tetraether lipids in deeply buried sediments from the South China Sea

[1]  E. Hopmans,et al.  A combined lipidomic and 16S rRNA gene amplicon sequencing approach reveals archaeal sources of intact polar lipids in the stratified Black Sea water column , 2018, Geobiology.

[2]  G. Jia,et al.  Intact polar glycosidic GDGTs in sediments settle from water column as evidenced from downcore sediment records , 2018, Chemical Geology.

[3]  Yi Ge Zhang,et al.  Export Depth of the TEX86 Signal , 2018, Paleoceanography and Paleoclimatology.

[4]  R. Dunbar,et al.  Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments , 2017, The ISME Journal.

[5]  B. Jørgensen,et al.  Size and composition of subseafloor microbial community in the Benguela upwelling area examined from intact membrane lipid and DNA analysis , 2017 .

[6]  M. Stieglmeier,et al.  Chemotaxonomic characterisation of the thaumarchaeal lipidome , 2017, Environmental microbiology.

[7]  Hong Yang,et al.  A rapid lake-shallowing event terminated preservation of the Miocene Clarkia Fossil Konservat-Lagerstätte (Idaho, USA) , 2017 .

[8]  M. Könneke,et al.  Stratification of archaeal membrane lipids in the ocean and implications for adaptation and chemotaxonomy of planktonic archaea. , 2016, Environmental microbiology.

[9]  Chuanlun Zhang,et al.  Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment , 2016 .

[10]  M. Könneke,et al.  Influence of temperature, pH, and salinity on membrane lipid composition and TEX 86 of marine planktonic thaumarchaeal isolates , 2015 .

[11]  E. Hopmans,et al.  Impact of sedimentary degradation and deep water column production on GDGT abundance and distribution in surface sediments in the Arabian Sea: Implications for the TEX86 paleothermometer , 2014 .

[12]  M. Könneke,et al.  Effects of growth phase on the membrane lipid composition of the thaumarchaeon Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the marine environment , 2014 .

[13]  E. Delong,et al.  Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the ocean , 2014, Proceedings of the National Academy of Sciences.

[14]  S. Wakeham,et al.  Distribution of glycerol ether lipids in the oxygen minimum zone of the Eastern Tropical North Pacific Ocean , 2014 .

[15]  Stefan Schouten,et al.  Fossilization and degradation of archaeal intact polar tetraether lipids in deeply buried marine sediments (Peru Margin) , 2014, Geobiology.

[16]  K. Hinrichs,et al.  Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol , 2013 .

[17]  Stefan Schouten,et al.  Differential degradation of intact polar and core glycerol dialkyl glycerol tetraether lipids upon post-depositional oxidation , 2013 .

[18]  A. Spang,et al.  Archaea in biogeochemical cycles. , 2013, Annual review of microbiology.

[19]  Stefan Schouten,et al.  Lack of 13 C-label incorporation suggests low turnover rates of thaumarchaeal intact polar tetraether lipids in sediments from the Iceland shelf , 2013 .

[20]  K. Hinrichs,et al.  Assessing production of the ubiquitous archaeal diglycosyl tetraether lipids in marine subsurface sediment using intramolecular stable isotope probing. , 2013, Environmental microbiology.

[21]  T. Ferdelman,et al.  Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations , 2013, Proceedings of the National Academy of Sciences.

[22]  Stefan Schouten,et al.  Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids in the Arabian Sea oxygen minimum zone. Part II: Selective preservation and degradation in sediments and consequences for the TEX86 , 2012 .

[23]  M. Stieglmeier,et al.  Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in Soil , 2012, Applied and Environmental Microbiology.

[24]  Stefan Schouten,et al.  Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments , 2012 .

[25]  B. Jørgensen,et al.  Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment , 2012, Nature.

[26]  Stefan Schouten,et al.  Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): Insights into the origin of lacustrine GDGTs , 2012 .

[27]  K. Hinrichs,et al.  Stable carbon isotopic compositions of intact polar lipids reveal complex carbon flow patterns among hydrocarbon degrading microbial communities at the Chapopote asphalt volcano , 2011 .

[28]  Stefan Schouten,et al.  Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone , 2011, The ISME Journal.

[29]  Xiao-Lei Liu,et al.  Distribution of intact and core GDGTs in marine sediments , 2011 .

[30]  Annika C. Mosier,et al.  Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments , 2011, Applied and Environmental Microbiology.

[31]  A. Boetius,et al.  Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: Evidence from intact polar membrane lipids , 2011 .

[32]  Y. Takano,et al.  Sedimentary membrane lipids recycled by deep-sea benthic archaea , 2010 .

[33]  Stefan Schouten,et al.  New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions , 2010 .

[34]  Stefan Schouten,et al.  Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach , 2010 .

[35]  M. Wagner,et al.  Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon , 2010, The ISME Journal.

[36]  K. Hinrichs,et al.  Structural diversity and fate of intact polar lipids in marine sediments , 2009 .

[37]  K. Hinrichs,et al.  Significant contribution of Archaea to extant biomass in marine subsurface sediments , 2008, Nature.

[38]  M. Könneke,et al.  Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota , 2008, Applied and Environmental Microbiology.

[39]  Stefan Schouten,et al.  Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. , 2007, Analytical chemistry.

[40]  Rika Anderson,et al.  Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Jørgensen,et al.  Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria , 2005, Nature.

[42]  Stefan Schouten,et al.  Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? , 2002 .

[43]  A. V. van Duin,et al.  Crenarchaeol DOI 10.1194/jlr.M200148-JLR200 , 2002, Journal of Lipid Research.