Thermo-sensitive transient receptor potential vanilloid channel-1 regulates intracellular calcium and triggers chromogranin A secretion in pancreatic neuroendocrine BON-1 tumor cells.

[1]  S. North,et al.  Medical Oncology , 2001, Sarcoma.

[2]  K. Hagino-Yamagishi,et al.  [Oncogene]. , 2019, Gan to kagaku ryoho. Cancer & chemotherapy.

[3]  R. Knabb,et al.  ANNALS OF THE NEW YORK ACADEMY OF SCIENCES , 2014, Annals of the New York Academy of Sciences.

[4]  H. Handwerker About the European Journal of Pain , 2012, European journal of pain.

[5]  A. Merighi,et al.  The somatostatin analogue octreotide inhibits capsaicin‐mediated activation of nociceptive primary afferent fibres in spinal cord lamina II (substantia gelatinosa) , 2011, European journal of pain.

[6]  F. Paulsen,et al.  Thermosensitive transient receptor potential channels in human corneal epithelial cells , 2011, Journal of cellular physiology.

[7]  A. Corti Chromogranin A and the Tumor Microenvironment , 2010, Cellular and Molecular Neurobiology.

[8]  L. Britto,et al.  TRPV1 receptors are involved in protein nitration and Müller cell reaction in the acutely axotomized rat retina. , 2010, Experimental eye research.

[9]  O. Strauß,et al.  Heat-sensitive TRPV channels in retinal pigment epithelial cells: regulation of VEGF-A secretion. , 2010, Investigative ophthalmology & visual science.

[10]  J. Capó-Aponte,et al.  Epidermal growth factor receptor transactivation by the cannabinoid receptor (CB1) and transient receptor potential vanilloid 1 (TRPV1) induces differential responses in corneal epithelial cells. , 2010, Experimental eye research.

[11]  U. Pleyer,et al.  TRPV channels mediate temperature-sensing in human corneal endothelial cells. , 2010, Experimental eye research.

[12]  G. Santoni,et al.  Triggering of transient receptor potential vanilloid type 1 (TRPV1) by capsaicin induces Fas/CD95-mediated apoptosis of urothelial cancer cells in an ATM-dependent manner. , 2009, Carcinogenesis.

[13]  N. Prevarskaya,et al.  Molecular mechanisms of TRP regulation in tumor growth and metastasis. , 2009, Biochimica et biophysica acta.

[14]  P. Reeh,et al.  TRPV1 controls acid‐ and heat‐induced calcitonin gene‐related peptide release and sensitization by bradykinin in the isolated mouse trachea , 2009, The European journal of neuroscience.

[15]  A. Sobel,et al.  The Journal of Biological Chemistry. , 2009, Nutrition reviews.

[16]  J. Adcock TRPV1 receptors in sensitisation of cough and pain reflexes. , 2009, Pulmonary pharmacology & therapeutics.

[17]  T. Bíró,et al.  Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma , 2009, Journal of Cancer Research and Clinical Oncology.

[18]  Tao Zhang,et al.  High expression of vanilloid receptor-1 is associated with better prognosis of patients with hepatocellular carcinoma. , 2008, Cancer genetics and cytogenetics.

[19]  F. Reimann,et al.  Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4 , 2008, Diabetologia.

[20]  Michael George,et al.  Planar patch-clamp force microscopy on living cells. , 2008, Ultramicroscopy.

[21]  T. Kawakita,et al.  Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling , 2007, Journal of cellular physiology.

[22]  G. Barritt,et al.  TRP channels in cancer. , 2007, Biochimica et biophysica acta.

[23]  David P. Corey,et al.  TRP channels in mechanosensation: direct or indirect activation? , 2007, Nature Reviews Neuroscience.

[24]  P. Reeh,et al.  A high‐threshold heat‐activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium , 2007, The European journal of neuroscience.

[25]  P. Neuhaus,et al.  Transient Receptor Potential Channel TRPM8 Agonists Stimulate Calcium Influx and Neurotensin Secretion in Neuroendocrine Tumor Cells , 2007, Neuroendocrinology.

[26]  M. Bödding,et al.  TRP proteins and cancer. , 2007, Cellular signalling.

[27]  N. Prevarskaya,et al.  Differential role of TRP channels in prostate cancer. , 2007, Biochemical Society transactions.

[28]  M. Tominaga,et al.  Nitric oxide activates TRP channels by cysteine S-nitrosylation , 2006, Nature chemical biology.

[29]  K. Westlund,et al.  Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. , 2006, American journal of physiology. Cell physiology.

[30]  A. Akopian,et al.  The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Sonja Stoelzle,et al.  Microchip technology for automated and parallel patch-clamp recording. , 2006, Small.

[32]  D. Clapham,et al.  An introduction to TRP channels. , 2006, Annual review of physiology.

[33]  A. Drost,et al.  Insulin-Like Growth Factor-1 Increases Intracellular Calcium Concentration in Human Primary Neuroendocrine Pancreatic Tumor Cells and a Pancreatic Neuroendocrine Tumor Cell Line (BON-1) via R-Type Ca2+ Channels and Regulates Chromogranin A Secretion in BON-1 Cells , 2006, Neuroendocrinology.

[34]  A. M. Sánchez,et al.  Induction of apoptosis in prostate tumor PC-3 cells and inhibition of xenograft prostate tumor growth by the vanilloid capsaicin , 2006, Apoptosis.

[35]  I. Vetter,et al.  The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway , 2006, Molecular pain.

[36]  H. Friess,et al.  Vanilloids in pancreatic cancer: potential for chemotherapy and pain management , 2005, Gut.

[37]  B. Nilius,et al.  TRP channels: an overview. , 2005, Cell calcium.

[38]  Makoto Tominaga,et al.  Structure and function of TRPV1 , 2005, Pflügers Archiv.

[39]  H. Pan,et al.  Transient Receptor Potential Vanilloid Type 1 Activation Down-regulates Voltage-gated Calcium Channels through Calcium-dependent Calcineurin in Sensory Neurons* , 2005, Journal of Biological Chemistry.

[40]  G. Barritt,et al.  Evidence that TRPM8 Is an Androgen-Dependent Ca2+ Channel Required for the Survival of Prostate Cancer Cells , 2004, Cancer Research.

[41]  Bernd Nilius,et al.  The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels , 2004, Nature.

[42]  R. Coggeshall,et al.  Somatostatin modulates the transient receptor potential vanilloid 1 (TRPV1) ion channel , 2004, Pain.

[43]  A. Drost,et al.  Ca2+ Channel Properties in Neuroendocrine Tumor Cell Cultures Investigated by Whole‐Cell Patch‐Clamp Technique , 2004, Annals of the New York Academy of Sciences.

[44]  V. M. Jackson,et al.  Cellular Signalling , 2003, The Journal of physiology.

[45]  S. Mergler Ca2+ channel characteristics in neuroendocrine tumor cell cultures analyzed by color contour plots , 2003, Journal of Neuroscience Methods.

[46]  B. Wiedenmann,et al.  R-Type Ca2+-channel Activity Is Associated with Chromogranin A Secretion in Human Neuroendocrine Tumor BON Cells , 2003, The Journal of Membrane Biology.

[47]  M. Fjällskog,et al.  Expression of molecular targets for tyrosine kinase receptor antagonists in malignant endocrine pancreatic tumors. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[48]  P. Anand,et al.  TRPV3 is a temperature-sensitive vanilloid receptor-like protein , 2002, Nature.

[49]  Robert H Blick,et al.  Whole cell patch clamp recording performed on a planar glass chip. , 2002, Biophysical journal.

[50]  A. Randall,et al.  The diversity in the vanilloid (TRPV) receptor family of ion channels. , 2002, Trends in pharmacological sciences.

[51]  John Mendelsohn,et al.  The EGF receptor family as targets for cancer therapy , 2000, Oncogene.

[52]  B. Wiedenmann,et al.  Molecular and cell biological aspects of neuroendocrine tumors of the gastroenteropancreatic system , 1998, Journal of Molecular Medicine.

[53]  E. Rozengurt,et al.  Gα12 and Gα13 Stimulate Rho-dependent Tyrosine Phosphorylation of Focal Adhesion Kinase, Paxillin, and p130 Crk-associated Substrate* , 1998, The Journal of Biological Chemistry.

[54]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[55]  H. Buhr,et al.  Electrophysiological properties of human carcinoid cells of the gut. , 1997, Gastroenterology.

[56]  S. Simon,et al.  Capsazepine, a vanilloid receptor antagonist, inhibits nicotinic acetylcholine receptors in rat trigeminal ganglia , 1997, Neuroscience Letters.

[57]  S. Thompson Advances in experimental medicine and biology , 1996 .

[58]  O. Nilsson,et al.  Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours , 1995, International journal of cancer.

[59]  B. Evers,et al.  The Human Carcinoid Cell Line, BON , 1994 .

[60]  J. Davies,et al.  The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. , 1994, Journal of medicinal chemistry.

[61]  H P Rang,et al.  Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin , 1992, British journal of pharmacology.

[62]  C. Maggi,et al.  Capsaicin desensitization in vivo is inhibited by ruthenium red. , 1990, European journal of pharmacology.

[63]  C. Maggi,et al.  Effects of carbonyl cyanide p-trichloromethoxyphenylhydrazone (CCCP) and of ruthenium red (RR) on capsaicin-evoked neuropeptide release from peripheral terminals of primary afferent neurones , 1990, Naunyn-Schmiedeberg's Archives of Pharmacology.

[64]  A. Dray,et al.  Ruthenium red blocks the capsaicin-induced increase in intracellular calcium and activation of membrane currents in sensory neurones as well as the activation of peripheral nociceptors in vitro , 1990, Neuroscience Letters.

[65]  Clive P. Page,et al.  Trends in Pharmacological Sciences , 1989 .

[66]  W. Huttner,et al.  Identification of gastroenteropancreatic neuroendocrine cells in normal and neoplastic human tissue with antibodies against synaptophysin, chromogranin A, secretogranin I (chromogranin B), and secretogranin II. , 1988, Gastroenterology.

[67]  S. Bevan,et al.  Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  I. Forgacs GASTROENTEROLOGY , 1988, The Lancet.

[69]  R. Moll,et al.  Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[71]  T. Jessell PAIN , 1982, The Lancet.

[72]  G. York Neuroendocrinology , 1981, Neurology.

[73]  品子 本田,et al.  "International Journal of Cancer"投稿論文について , 1971 .

[74]  Seymour Reichlin,et al.  Handbook of experimental pharmacology , 1984 .

[75]  W. Gardner,et al.  Carcinogenesis , 1961, The Yale Journal of Biology and Medicine.

[76]  D W SMITHERS,et al.  Clinical Cancer Research , 1941, Lancet.

[77]  S. Schultz,et al.  Physiological Reviews , 1941 .

[78]  W. E. Gye,et al.  CANCER RESEARCH , 1923, British medical journal.

[79]  Jouni Parkkonen,et al.  Pulmonary Pharmacology & Therapeutics , 2011 .

[80]  N. Prevarskaya,et al.  Oncogenic TRP channels. , 2011, Advances in experimental medicine and biology.

[81]  Matthieu Hamel,et al.  Journal of Medicinal Chemistry , 2010 .

[82]  Mark L Dallas,et al.  Robotic multiwell planar patch-clamp for native and primary mammalian cells , 2009, Nature Protocols.

[83]  Michael George,et al.  Planar patch clamp: advances in electrophysiology. , 2008, Methods in molecular biology.

[84]  J. A. Peters,et al.  Transient receptor potential cation channels in disease. , 2007, Physiological reviews.

[85]  S. Pingle,et al.  Capsaicin receptor: TRPV1 a promiscuous TRP channel. , 2007, Handbook of experimental pharmacology.

[86]  Nature Protocols , 2006, Nature Cell Biology.

[87]  Editor-in-Chief R. Seifert,et al.  Naunyn-Schmiedeberg's archives of pharmacology , 2005, Klinische Wochenschrift.

[88]  K. Harrington,et al.  Biological significance of c-erbB family oncogenes in head and neck cancer , 2005, Cancer and Metastasis Reviews.

[89]  M. Culler,et al.  Subtype selective interactions of somatostatin and somatostatin analogs with sst1, sst2, and sst5 in BON-1 cells , 2004, Medical oncology.

[90]  K. Venkatachalam,et al.  Control of TRPC and store-operated channels by protein kinase C. , 2004, Novartis Foundation symposium.

[91]  F. Lembeck,et al.  Activation of primary afferent neurons by thermal stimulation , 2004, Naunyn-Schmiedeberg's Archives of Pharmacology.

[92]  Hao Zheng,et al.  Novartis Foundation Symposium , 2003 .

[93]  Jameel,et al.  Cancer genetics and cytogenetics , 1998 .

[94]  C. Hammond Cellular and molecular neurobiology , 1996 .

[95]  F. Silva,et al.  In: Pflügers Archiv , 1995 .

[96]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[97]  W. Huttner,et al.  Synaptophysin and chromogranins/secretogranins widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis , 1989, Virchows Archiv. B, Cell pathology including molecular pathology.

[98]  D. Gaasterland,et al.  Investigative Ophthalmology & Visual Science , 1978 .

[99]  HighWire Press,et al.  American journal of physiology. Cell physiology , 1977 .

[100]  C. Núñez‐Álvarez,et al.  Experimental Eye Research , 2019, Nature.

[101]  S. Lowen The Biophysical Journal , 1960, Nature.

[102]  O. A. Trowell Annual Review of Physiology , 1948, Nature.

[103]  E. F. ARMSTRONG,et al.  Annual Review of Biochemistry , 1944, Nature.

[104]  Rene,et al.  THE AMERICAN JOURNAL OF PHYSIOLOGY. , 1897, Science.

[105]  E. Sibille,et al.  ddition of glutamate to serum-free culture promotes recovery of electrical ctivity in adult hippocampal neurons in vitro , 2010 .

[106]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .