What Everyone Should Know About the Belousov-Zhabotinsky Reaction

In the early 1950s a Soviet biochemist, Boris P. Belousov, was trying to develop a simple chemical model of the oxidation of organic molecules in living cells. Central to these pathways is the Krebs cycle, whereby organic acids are oxidized to CO2 and H2O. In aerobic organisms, oxygen is the oxidizing agent, and the reactions are catalyzed by enzymes and electron-transport proteins, many of which rely on iron ions (Fe2+/Fe3+) to move electrons around. In his testtube version of metabolism, Belousov used citric acid (one of the intermediates of the Krebs cycle) as an organic substrate, bromate ions (BrO3-) as oxidizing agent, and cerium ions as catalyst. Any chemist would expect the reaction to proceed monotonically to equilibrium, perhaps showing one visible sign of progress by changing from a colorless solution (cerium in the reduced state, Ce3+) to pale yellow (the oxidized state, Ce4+). So we can imagine Belousov’s surprise when his reaction mixture turned yellow then colorless, then yellow again and colorless, oscillating dozens of times between oxidized and reduced states (Fig. 1).

[1]  R. Luther,et al.  II. Sitzung am Dienstag, den 22. Mai, vormittags 9 Uhr, im grossen Auditorium des chemischen Laboratoriums der Technischen Hochschule. Räumliche Fortpflanzung chemischer Reaktionen , 1906 .

[2]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[3]  R. J. Field A reaction periodic in time and space. A lecture demonstration , 1972 .

[4]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[5]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[6]  A. Zhabotinsky,et al.  Autowave processes in a distributed chemical system. , 1973, Journal of theoretical biology.

[7]  A. Winfree,et al.  Scroll-Shaped Waves of Chemical Activity in Three Dimensions , 1973, Science.

[8]  Britton Chance,et al.  Biological and biochemical oscillators , 1973 .

[9]  Arthur T. Winfree,et al.  Rotating Chemical Reactions , 1974 .

[10]  Richard M. Noyes,et al.  Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction , 1974 .

[11]  L. Ladányi,et al.  The Ru(dipy)32+-Bromate-Malonic acid oscillating system , 1974 .

[12]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[13]  John L. Hudson,et al.  Experimental evidence of chaotic states in the Belousov–Zhabotinskii reaction , 1977 .

[14]  W Geiseler,et al.  Three steady state situation in an open chemical reaction system I. , 1977, Biophysical chemistry.

[15]  John J. Tyson,et al.  OSCILLATIONS, BISTABILITY, AND ECHO WAVES IN MODELS OF THE BELOUSOV‐ZHABOTINSKII REACTION * , 1979 .

[16]  J. Tyson,et al.  Target patterns in a realistic model of the Belousov–Zhabotinskii reaction , 1980 .

[17]  Hermann Haken,et al.  Dynamics of Synergetic Systems , 1980 .

[18]  J. Rinzel Impulse Propagation in Excitable Systems , 1980 .

[19]  M. Smoes Chemical Waves in the Oscillatory Zhabotinskii System. A Transition from Temporal to Spatio-temporal Organization , 1980 .

[20]  Kinematics of stationary circulation in an excitable medium , 1980 .

[21]  K. Bar-Eli,et al.  Bistability of the oxidation of cerous ions by bromate in a stirred flow reactor , 1981 .

[22]  A. Wolf,et al.  One-Dimensional Dynamics in a Multicomponent Chemical Reaction , 1982 .

[23]  H. Swinney,et al.  Observation of a strange attractor , 1983 .

[24]  C. Vidal,et al.  Non-Equilibrium Dynamics in Chemical Systems , 1984 .

[25]  A. T. Winfree,et al.  The prehistory of the Belousov-Zhabotinsky oscillator , 1984 .

[26]  J. Tyson,et al.  The Speed of Propagation of Oxidizing and Reducing Wave Fronts in the Belousov-Zhabotinskii Reaction , 1984 .

[27]  A. Pertsov,et al.  [Vortex ring in a 3-dimensional active medium described by reaction-diffusion equations]. , 1984, Doklady Akademii nauk SSSR.

[28]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[29]  R. L. Pitliya,et al.  Oscillations in Chemical Systems , 1986 .

[30]  R. J. Field,et al.  On the oxybromine chemistry rate constants with cerium ions in the Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H+ .dblharw. 2BrO.ovrhdot.2 + H2O , 1986 .

[31]  J. Keener A geometrical theory for spiral waves in excitable media , 1986 .

[32]  J. Keener,et al.  Spiral waves in the Belousov-Zhabotinskii reaction , 1986 .

[33]  A Goldbeter,et al.  A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. , 1987, Biophysical journal.

[34]  A. T. Winfree,et al.  Simulation of Wave Processes in Excitable Media , 1988 .

[35]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[36]  John J. Tyson,et al.  When Time Breaks Down: The Three‐Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias , 1988 .

[37]  James P. Keener,et al.  The dynamics of three-dimensional scroll waves in excitable media , 1988 .

[38]  Wolfgang Jahnke,et al.  Three-dimensional scroll ring dynamics in the Belousov-Zhabotinskii reagent and in the two-variable Oregonator model , 1989 .

[39]  J. Tyson,et al.  Cyclic AMP waves during aggregation of Dictyostelium amoebae. , 1989, Development.

[40]  B Hess,et al.  Critical size and curvature of wave formation in an excitable chemical medium. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. T. Winfree,et al.  Stable Particle-Like Solutions to the Nonlinear Wave Equations of Three-Dimensional Excitable Media , 1990, SIAM Rev..

[42]  J. Tyson,et al.  THE DIFFERENTIAL GEOMETRY OF SCROLL WAVES , 1991 .

[43]  J. Tyson Modeling the cell division cycle: cdc2 and cyclin interactions. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Richard J. Field,et al.  Simple models of deterministic chaos in the Belousov-Zhabotinskii reaction , 1991 .

[45]  V. Krinsky,et al.  Chapter 1. Spiral, ring and scroll patterns: Experiments Direct observation of vortex ring collapse in a chemically active medium , 1991 .

[46]  John J. Tyson,et al.  The Dynamics of Scroll Waves in Excitable Media , 1992, SIAM Rev..

[47]  Richard J. Field,et al.  A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction , 1992, Nature.