A macroscopic collisional model for debris-flows simulation

SCIDDICA S"4"c is the latest hexagonal release of a family of Cellular Automata models for the simulation of flow-type landslides. It is able to simulate the erosion of the regolith along the flow path, besides branching and re-joining events of the flow masses. Dissipative effects are modelled in terms of not-exclusive velocity-dependent mechanisms, which allow to simulate even complex rheological behaviours. Moreover, it is able to manage the peculiar characteristics of rapid flows, and the effects of mass collisions, by guaranteeing mass conservation. In case of no dissipation, conservation of energy and momentum are also assured. Model calibration has been carried out through parallel Genetic Algorithms, by considering the May 1998 Curti-Sarno (Campania, Southern Italy) debris flow. A preliminary analysis has also been performed, aiming at evaluating the sensitivity of the model with respect to a sub-set of model parameters, the size of the cell, the orientation of the cellular space, and noise in input data. Calibration confirmed the reliability of the model in reproducing the considered case of study. Moreover, sensitivity analyses pointed out its robustness with respect to the considered factors, by highlighting their different weight in affecting the behaviour of the simulations.

[1]  D. Laigle,et al.  Comparison of numerical simulation of muddy debris-flow spreading to records of real events , 2003 .

[2]  Bruce D. Malamud,et al.  Cellular-automata models applied to natural hazards , 2000, Comput. Sci. Eng..

[3]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[4]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[5]  H. Miyamoto,et al.  Rheology and topography control the path of a lava flow: Insight from numerical simulations over a preexisting topography , 2004 .

[6]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[7]  G. Weir,et al.  A general model for Mt. Ruapehu lahars , 1990 .

[8]  Tamotsu Takahashi Process of Occurrence, Flow and Deposition of Viscous Debris Flow , 2001 .

[9]  A. Clerici,et al.  Simulation of the Parma River blockage by the Corniglio landslide (Northern Italy) , 2000 .

[10]  義宏 福嶌 Symposium on Erosion and Sedimentation in the Pacific Rimに出席して , 1988 .

[11]  Sauro Succi,et al.  The lattice Boltzmann equation: a new tool for computational fluid-dynamics , 1991 .

[12]  Rocco Rongo,et al.  Cellular automata model for parallel simulation of contamination processes by oil in porous soils , 1999, PARCO.

[13]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[14]  M. Fukuoka,et al.  LANDSLIDES ASSOCIATED WITH RAINFALL , 1980 .

[15]  C. Paola,et al.  Properties of a cellular braided‐stream model , 1997 .

[16]  Robert K. Mark,et al.  Statistical and Simulation Models for Mapping Debris-Flow Hazard , 1995 .

[17]  H. Miyamoto,et al.  Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies , 1998 .

[18]  John E. Costa,et al.  Debris Flows/Avalanches: Process, Recognition, and Mitigation , 1987 .

[19]  John E. Costa,et al.  Physical Geomorphology of Debris Flows , 1984 .

[20]  Theodor H. Erismann,et al.  Dynamics of rockslides and rockfalls , 2001 .

[21]  Roberto Serra,et al.  An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata , 1999, Future Gener. Comput. Syst..

[22]  Sho Sasaki,et al.  Simulating lava flows by an improved cellular automata method , 1997 .

[23]  S. D. Gregorio,et al.  A Cellular Automata model for soil erosion by water , 2001 .

[24]  R. Yoshinaka,et al.  SLOPE FAILURES CAUSED BY HEAVY RAINFALL IN JAPAN , 1974 .

[25]  F. Guadagno,et al.  Preliminary report on the landslides of 5 May 1998, Campania, southern Italy , 1998 .

[26]  Chiara Deangeli,et al.  Cellular automaton for realistic modelling of landslides , 1994, comp-gas/9407002.

[27]  A. Patra,et al.  Modeling and Computing Geophysical Mass Flows , 2003 .

[28]  20. Debris flows in the Campanian volcaniclastic soils , 1991 .

[29]  O. Hungr Analysis of debris flow surges using the theory of uniformly progressive flow , 2000 .

[30]  R. Jibson,et al.  Landslide Processes of the Eastern United States and Puerto Rico , 1990 .

[31]  William Spataro,et al.  Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: An application to debris flows , 2006, Comput. Geosci..

[32]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[33]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[34]  Thomas C. Pierson,et al.  A rheologic classification of subaerial sediment-water flows , 1987 .

[35]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[36]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  G. Guidicini,et al.  Tentative correlation between rainfall and landslides in a humid tropical environment , 1977 .

[39]  Giuseppe A. Trunfio Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model , 2004, ACRI.

[40]  N. Caine,et al.  The Rainfall Intensity - Duration Control of Shallow Landslides and Debris Flows , 1980 .

[41]  Chen Chen-lung,et al.  DEBRIS-FLOW HAZARDS MITIGATION: MECHANICS, PREDICTION, AND ASSESSMENT , 2007 .

[42]  C. Paola,et al.  A cellular model of braided rivers , 1994, Nature.

[43]  J. Vallance,et al.  OBJECTIVE DELINEATION OF LAHAR-INUNDATION HAZARD ZONES , 1998 .

[44]  R. H. Campbell,et al.  Debris flows originating from soil slips during rainstorms in Southern California* , 1974, Quarterly Journal of Engineering Geology.

[45]  J. Jiménez,et al.  Boltzmann Approach to Lattice Gas Simulations , 1989 .

[46]  S. Schilling Copies of this report can be purchased from: , 1996 .

[47]  Giulio Iovine,et al.  Rock-fall Potential in the Yosemite Valley, California , 1999 .

[48]  R. Iverson,et al.  Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions , 1997 .

[49]  Suzana Dragicevic,et al.  iCity: A GIS-CA modelling tool for urban planning and decision making , 2007, Environ. Model. Softw..

[50]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[51]  E. Tadmor,et al.  Hyperbolic Problems: Theory, Numerics, Applications , 2003 .

[52]  William Z. Savage,et al.  A Mass-Change Model for the Estimation of Debris-Flow Runout , 1988, The Journal of Geology.

[53]  P. Julien,et al.  Two‐Dimensional Water Flood and Mudflow Simulation , 1993 .

[54]  Randall W. Jibson,et al.  Debris flows in southern Puerto Rico , 1989 .

[55]  Roger Smith,et al.  The application of cellular automata to the erosion of landforms , 1991 .

[56]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[57]  G. Wieczorek,et al.  DEBRIS-FLOW HAZARDS IN AREAS AFFECTED BY THE JUNE 27, 1995 STORM IN MADISON COUNTY, VIRGINIA , 1997 .

[58]  Rocco Rongo,et al.  Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows , 2005 .

[59]  Richard M. Iverson,et al.  The debris-flow rheology myth , 2003 .

[60]  S. D. Gregorio,et al.  Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects , 2005 .

[61]  R. Mark,et al.  Map of debris-flow hazard in the Honolulu District of Oahu, Hawaii , 1993 .

[62]  M. Pareschi,et al.  Numerical simulation of some lahars from Mount St. Helens , 1992 .

[63]  F. Sandersen,et al.  The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability , 1997 .

[64]  M. Moser,et al.  Geotechnical aspects of soil slips in Alpine regions , 1983 .

[65]  Ralph O. Kehle,et al.  Physical Processes in Geology , 1972 .

[66]  Rocco Rongo,et al.  First simulations of the Sarno debris flows through Cellular Automata modelling , 2003 .

[67]  M. Crozier,et al.  Assessing the probability of rapid mass movement , 1980 .

[68]  Tamotsu Takahashi,et al.  What is debris flow , 2007 .

[69]  S. D. Gregorio,et al.  Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S 3–hex , 2003 .

[70]  Bruce D. Malamud,et al.  Self-Organized Criticality Applied to Natural Hazards , 1999 .

[71]  G. Wieczorek,et al.  Effect of rainfall intensity and duration on debris flows in central Santa Cruz Mountains, California , 1987 .

[72]  A. Armanini On the dynamic impact of debris flows , 1997 .

[73]  S. D. Gregorio,et al.  Mount ontake landslide simulation by the Cellular Automata model SCIDDICA-3 , 1999 .

[74]  Rocco Rongo,et al.  PYR: a Cellular Automata model for pyroclastic flows and application to the 1991 Mt. Pinatubo eruption , 2005, Future Gener. Comput. Syst..

[75]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[76]  G. Wieczorek,et al.  Landslides, Floods, and Marine Effects of the Storm of January 3-5, 1982, in the San Francisco Bay Region, California , 1988 .

[77]  G. Wieczorek,et al.  Rock-fall hazards in the Yosemite Valley , 1998 .

[78]  J. Costa,et al.  Developments and applications of geomorphology , 1984 .

[79]  Factors influencing the distribution of debris avalanches associated with the 1969 Hurricane Camille in Nelson County, Virginia , 1989 .

[80]  R. Rongo,et al.  Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios , 2000 .

[81]  Niandry Moreno,et al.  Biocomplexity of deforestation in the Caparo tropical forest reserve in Venezuela: An integrated multi-agent and cellular automata model , 2007, Environ. Model. Softw..

[82]  R. Hansen,et al.  SIMULATION OF THREE LAHARS IN THE MOUNT ST. HELENS AREA, WASHINGTON USING A ONE-DIMENSIONAL, UNSTEADY-STATE STREAMFLOW MODEL , 1988 .

[83]  Russell H. Campbell,et al.  Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California , 1975 .

[84]  Georgios Ch. Sirakoulis,et al.  A cellular automaton simulation tool for modelling seismicity in the region of Xanthi , 2007, Environ. Model. Softw..

[85]  R. J. Chandler Slope stability engineering : developments and applications : proceedings of the International Conference on Slope Stability , 1991 .

[86]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[87]  W. M. Brown,et al.  Real-Time Landslide Warning During Heavy Rainfall , 1987, Science.