Photomechanical actuation of ligand geometry in enantioselective catalysis.

A catalyst that couples a photoswitch to the biaryl backbone of a chiral bis(phosphine) ligand, thus allowing photochemical manipulation of ligand geometry without perturbing the electronic structure is reported. The changes in catalyst activity and selectivity upon switching can be attributed to intramolecular mechanical forces, thus laying the foundation for a new class of catalysts whose selectivity can be varied smoothly and in situ over a useful range by controlling molecular stress experienced by the catalyst during turnover. Forces on the order of 100 pN are generated, thus leading to measurable changes in the enantioselectivities of asymmetric Heck arylations and Trost allylic alkylations. The differential coupling between applied force and competing stereochemical pathways is quantified and found to be more efficient for the Heck arylations.

[1]  Stefan Hecht,et al.  Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. , 2014, Chemical Society reviews.

[2]  Xuanhe Zhao,et al.  Mechanochemical Activation of Covalent Bonds in Polymers with Full and Repeatable Macroscopic Shape Recovery. , 2014, ACS macro letters.

[3]  Andrew J Boydston,et al.  Successive mechanochemical activation and small molecule release in an elastomeric material. , 2014, Journal of the American Chemical Society.

[4]  R. Boulatov,et al.  Model studies of force-dependent kinetics of multi-barrier reactions , 2013, Nature Communications.

[5]  R. Sijbesma,et al.  Mechanocatalysis: forcing latent catalysts into action , 2013 .

[6]  C. Bielawski,et al.  Illuminating Photoswitchable Catalysis , 2013 .

[7]  Cassandra M. Degen,et al.  Modeling mechanophore activation within a crosslinked glassy matrix , 2013 .

[8]  C. Bielawski,et al.  Photoswitchable NHC-promoted ring-opening polymerizations. , 2013, Chemical communications.

[9]  C. Hawker,et al.  Control of a living radical polymerization of methacrylates by light. , 2012, Angewandte Chemie.

[10]  R. Boulatov,et al.  Force-reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. , 2012, Journal of the American Chemical Society.

[11]  R. Boulatov,et al.  The entropic and enthalpic contributions to force-dependent dissociation kinetics of the pyrophosphate bond. , 2011, Journal of the American Chemical Society.

[12]  P. Guiry,et al.  The asymmetric Heck and related reactions. , 2011, Chemical Society reviews.

[13]  Jeffrey S. Moore,et al.  Shear activation of mechanophore-crosslinked polymers , 2011 .

[14]  Jeffrey S. Moore,et al.  Environmental effects on mechanochemical activation of spiropyran in linear PMMA , 2011 .

[15]  R. Boulatov,et al.  Chemomechanics: chemical kinetics for multiscale phenomena. , 2011, Chemical Society reviews.

[16]  Ben L Feringa,et al.  Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor , 2011, Science.

[17]  C. Bielawski,et al.  Mechanical activation of catalysts for C-C bond forming and anionic polymerization reactions from a single macromolecular reagent. , 2010, Journal of the American Chemical Society.

[18]  B. Akhremitchev,et al.  Molecular stress relief through a force-induced irreversible extension in polymer contour length. , 2010, Journal of the American Chemical Society.

[19]  Paul V Braun,et al.  Force-induced redistribution of a chemical equilibrium. , 2010, Journal of the American Chemical Society.

[20]  R. Boulatov,et al.  Strain-Dependent Acceleration of a Paradigmatic SN2 Reaction Accurately Predicted by the Force Formalism , 2010 .

[21]  S. Hecht,et al.  Künstliche lichtgesteuerte Katalysatorsysteme , 2010 .

[22]  S. Hecht,et al.  Artificial light-gated catalyst systems. , 2010, Angewandte Chemie.

[23]  R. Boulatov,et al.  Kinetics of thiol/disulfide exchange correlate weakly with the restoring force in the disulfide moiety. , 2009, Angewandte Chemie.

[24]  R. Boulatov,et al.  A molecular force probe. , 2009, Nature nanotechnology.

[25]  T. Martínez,et al.  First principles dynamics and minimum energy pathways for mechanochemical ring opening of cyclobutene. , 2009, Journal of the American Chemical Society.

[26]  R. Sijbesma,et al.  Activating catalysts with mechanical force. , 2009, Nature chemistry.

[27]  Scott R White,et al.  Mechanophore-linked addition polymers. , 2007, Journal of the American Chemical Society.

[28]  A. Chan,et al.  A new class of versatile chiral-bridged atropisomeric diphosphine ligands: remarkably efficient ligand syntheses and their applications in highly enantioselective hydrogenation reactions. , 2006, Journal of the American Chemical Society.

[29]  M. Parvez,et al.  Use of 1H NMR chemical shifts to determine the absolute configuration and enantiomeric purity for enantiomers of 3,3′-disubstituted-MeO-BIPHEP derivatives , 2006 .

[30]  Xumu Zhang,et al.  A correlation study of bisphosphine ligand bite angles with enantioselectivity in Pd-catalyzed asymmetric transformations , 2005 .

[31]  R. McDonald,et al.  Synthesis and coordination chemistry of a photoswitchable bis(phosphine) ligand. , 2005, Inorganic chemistry.

[32]  T. B. Norsten,et al.  Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. , 2005, Angewandte Chemie.

[33]  V. Ratovelomanana-Vidal,et al.  Chiral biphenyl diphosphines for asymmetric catalysis: stereoelectronic design and industrial perspectives. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[34]  V. Ratovelomanana-Vidal,et al.  Difluorphos, an electron-poor diphosphane: a good match between electronic and steric features. , 2004, Angewandte Chemie.

[35]  Xumu Zhang,et al.  New chiral phosphorus ligands for enantioselective hydrogenation. , 2003, Chemical reviews.

[36]  A. Pizzano,et al.  Electronic Differences between Coordinating Functionalities of Chiral Phosphine−Phosphites and Effects in Catalytic Enantioselective Hydrogenation , 2002 .

[37]  B. Trost,et al.  On the Source of Transfer of Stereochemical Information in Ligands for Pd-Catalyzed AAA Reactions , 2001 .

[38]  Z. Zhang,et al.  Synthesis of chiral bisphosphines with tunable bite angles and their applications in asymmetric hydrogenation of beta-ketoesters. , 2000, The Journal of organic chemistry.

[39]  M. Parvez,et al.  Synthesis, resolution, and applications of 2, 2'-bis(diphenylphosphino)-3,3'- binaphtho[2,1-b]furan. , 2000, Organic letters.

[40]  J. Reek,et al.  Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. , 2000, Chemical reviews.

[41]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[42]  Peter Dierkes,et al.  The bite angle makes the difference: a practical ligand parameter for diphosphine ligands , 1999 .

[43]  M. Hayashi,et al.  Enantioselective Heck Reactions Catalyzed by Chiral Phosphinooxazoline-Palladium Complexes , 1997 .

[44]  B. Trost,et al.  Asymmetric Transition Metal-Catalyzed Allylic Alkylations. , 1996, Chemical reviews.

[45]  B. Trost,et al.  A modular approach for ligand design for asymmetric allylic alkylations via enantioselective palladium-catalyzed ionizations , 1992 .

[46]  F. Ozawa,et al.  Palladium-catalyzed asymmetric arylation of 2,3-dihydrofuran: 1,8-Bis(dimethylamino)naphthalene as an efficient base , 1992 .

[47]  M. Yamaguchi,et al.  Palladium-catalyzed asymmetric alkylation via π-allyl intermediate: Acetamidomalonate ester as a nucleophile. , 1990 .

[48]  B. F. Taylor,et al.  The chemistry of heteroarylphosphorus compounds. Part 15. Phosphorus-31 nuclear magnetic resonance studies of the donor properties of heteroarylphosphines towards selenium and platinum(II) , 1982 .