The Tjon band in Nuclear Lattice Effective Field Theory

[1]  K. Schmidt,et al.  Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions , 2017, 1706.07668.

[2]  H. Hammer,et al.  Three-particle quantization condition in a finite volume: 1. The role of the three-particle force , 2017, 1706.07700.

[3]  Dean Lee,et al.  Neutron-proton scattering at next-to-next-to-leading order in Nuclear Lattice Effective Field Theory , 2017, 1702.05319.

[4]  Ning Li,et al.  Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering. , 2017, Physical review letters.

[5]  Dean Lee,et al.  Volume dependence of N-body bound states , 2017, 1701.00279.

[6]  Dean Lee,et al.  Nucleon-deuteron scattering using the adiabatic projection method , 2016, 1603.02333.

[7]  T. Luu,et al.  Applying twisted boundary conditions for few-body nuclear systems , 2015, 1511.06598.

[8]  M. Hoferichter,et al.  Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory. , 2015, Physical review letters.

[9]  Dean Lee,et al.  Precise determination of lattice phase shifts and mixing angles , 2015, 1506.05652.

[10]  Dean Lee,et al.  Ab initio alpha–alpha scattering , 2015, Nature.

[11]  S. Liebig,et al.  Few-nucleon systems with state-of-the-art chiral nucleon-nucleon forces , 2015, 1505.07218.

[12]  Dean Lee,et al.  Regularization methods for Nuclear Lattice Effective Field Theory , 2015, 1505.07000.

[13]  W. Nazarewicz,et al.  Accurate nuclear radii and binding energies from a chiral interaction , 2015, 1502.04682.

[14]  A. Rusetsky,et al.  Spectrum of three-body bound States in a finite volume. , 2014, Physical review letters.

[15]  E. Epelbaum,et al.  Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order , 2014, The European Physical Journal A.

[16]  J. E. Amaro,et al.  Statistical error analysis for phenomenological nucleon-nucleon potentials , 2014 .

[17]  P. Navrátil,et al.  Chiral two- and three-nucleon forces along medium-mass isotope chains , 2014 .

[18]  J. E. Amaro,et al.  Statistical Error analysis of Nucleon-Nucleon phenomenological potentials , 2014, 1404.0314.

[19]  P. Navrátil,et al.  Chiral two- and three-nucleon forces along medium-mass isotope chains , 2013, 1312.2068.

[20]  Dean Lee,et al.  Lattice effective field theory for medium-mass nuclei , 2013, 1311.0477.

[21]  D. Lunney,et al.  Masses of exotic calcium isotopes pin down nuclear forces , 2013, Nature.

[22]  R. Roth,et al.  Ab Initio Calculations of Medium-Mass Nuclei with Explicit Chiral 3N Interactions , 2012, 1211.4748.

[23]  A. Nicholson,et al.  Lattice methods for strongly interacting many-body systems , 2012, 1208.6556.

[24]  Evgeny Epelbaum,et al.  Structure and rotations of the Hoyle state. , 2012, Physical review letters.

[25]  J. Menendez,et al.  Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes , 2011, 1108.2680.

[26]  T. Luu,et al.  Extracting Scattering Phase-Shifts in Higher Partial-Waves from Lattice QCD Calculations , 2011, 1101.3347.

[27]  Evgeny Epelbaum,et al.  Ab initio calculation of the Hoyle state. , 2011, Physical review letters.

[28]  E. Epelbaum,et al.  Lattice calculations for A = 3 , 4, 6, 12 nuclei using chiral effective field theory , 2010, 1003.5697.

[29]  Dean Lee,et al.  Lattice effective field theory calculations for A = 3, 4, 6, 12 nuclei. , 2009, Physical review letters.

[30]  Toshio Suzuki,et al.  Three-body forces and the limit of oxygen isotopes. , 2009, Physical review letters.

[31]  H. Hofmann,et al.  Universal correlations in pion-less EFT with the resonating group method: Three and four nucleons , 2009, 0903.5538.

[32]  M. Hjorth-Jensen,et al.  Medium-mass nuclei from chiral nucleon-nucleon interactions. , 2008, Physical review letters.

[33]  Dean Lee Lattice simulations for few- and many-body systems , 2008, 0804.3501.

[34]  E. Epelbaum,et al.  Chiral effective field theory on the lattice at next-to-leading order , 2007, 0712.2990.

[35]  E. Epelbaum,et al.  Four-nucleon force using the method of unitary transformation , 2007, 0710.4250.

[36]  E. Epelbaum,et al.  Two-particle scattering on the lattice: Phase shifts, spin-orbit coupling, and mixing angles , 2007, 0708.1780.

[37]  P. Navrátil,et al.  Structure of A=10-13 nuclei with two- plus three-nucleon interactions from chiral effective field theory. , 2007, Physical review letters.

[38]  U. Meißner,et al.  Lattice simulations for light nuclei: Chiral effective field theory at leading order , 2006, nucl-th/0611087.

[39]  Dean Lee Large- N droplets in two dimensions , 2005, physics/0512085.

[40]  E. Epelbaum Few-nucleon forces and systems in chiral effective field theory , 2005, nucl-th/0509032.

[41]  U. Meißner,et al.  On the correlation between the binding energies of the triton and the α-particle , 2004, nucl-th/0409040.

[42]  H. Hammer,et al.  Modern theory of nuclear forces , 2004, 0811.1338.

[43]  S. Bogner,et al.  Low-momentum interaction in few-nucleon systems , 2004, nucl-th/0405016.

[44]  H. Witała,et al.  Three-nucleon forces from chiral effective field theory , 2002, nucl-th/0208023.

[45]  Kamada,et al.  Modern Nuclear Force Predictions for the α Particle , 2000, nucl-th/0004023.

[46]  Stoks,et al.  Construction of high-quality NN potential models. , 1994, Physical review. C, Nuclear physics.

[47]  S. Weinberg Effective chiral lagrangians for nucleonpion interactions and nuclear forces , 1991 .

[48]  Durand,et al.  Unitarity constraints on grand unified models. , 1989, Physical review. D, Particles and fields.

[49]  J. Tjon Bound states of 4He with local interactions , 1975 .

[50]  R. T. Birge,et al.  The Calculation of Errors by the Method of Least Squares , 1932 .