A nodal analysis method for simulating the behavior of electrothermal microactuators

This paper presents a novel approach to verify and optimize surface micromachined electrothermal microactuators by using a nodal analysis method. The nodal analysis method for the mechanical and electrostatic devices is a schematic-based method which simplifies the design of MEMS devices significantly. A variety of the surface micromachined electrothermal microactuators have been widely applied in various areas due to the high force provided at a relatively low input voltage. These electrothermal microactuators can also be decomposed into essential elements of beams and anchors. This paper presents the nodal analysis method for the electrothermal microactuators. The temperature dependent properties for the thermal conductivity, electrical resistivity and thermal expansion coefficient of polysilicon beams are included. The effect of the effective axial length for the beams due to lateral deflection and large axial stress is also taken into account. This approach is verified by ANSYS and the simulation data agrees well with each other. It extends the general nodal analyses method to simulate the electrothermal microactuators.

[1]  Neville Ka-shek Lee,et al.  A simple approach to characterizing the driving force of polysilicon laterally driven thermal microactuators , 2000 .

[2]  Jacob K. White,et al.  Emerging simulation approaches for micromachined devices , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  A. Geisberger,et al.  Electrothermal properties and modeling of polysilicon microthermal actuators , 2003 .

[4]  Y. Gianchandani,et al.  Bent-beam electro-thermal actuators for high force applications , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[5]  Neville Ka-shek Lee,et al.  Analytical modeling and optimization for a laterally-driven polysilicon thermal actuator , 1999 .

[6]  Alice M. Agogino,et al.  AUTOMATED DESIGN SYNTHESIS FOR MICRO-ELECTRO-MECHANICAL SYSTEMS (MEMS) , 2002, DAC 2002.

[7]  Jia Tzer Hsu,et al.  A rational formulation of thermal circuit models for electrothermal simulation. I. Finite element method [power electronic systems] , 1996 .

[8]  F.L. Lewis,et al.  Method for Determining a Dynamical State–Space Model for Control of Thermal MEMS Devices , 2005, Journal of Microelectromechanical Systems.

[9]  Donald M. Chiarulli,et al.  System simulation of mixed-signal multi-domain microsystems with piecewise linear models , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Chieh Kung,et al.  Analysis of the optimal dimension on the electrothermal microactuator , 2002 .

[11]  Amir Khajepour,et al.  Modeling of two-hot-arm horizontal thermal actuator , 2003 .

[12]  Neville Ka-shek Lee,et al.  Numerical simulation of a polysilicon thermal flexure actuator , 2002 .

[13]  Y. Yang,et al.  Extraction of heat-transfer macromodels for MEMS devices , 2004 .

[14]  Mu Chiao,et al.  Electrothermal responses of lineshape microstructures , 1996 .

[15]  Victor M. Bright,et al.  Thermal microactuators for surface-micromachining processes , 1995, MOEMS-MEMS.

[16]  Timothy W. McLain,et al.  Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator , 2002 .

[17]  K. Najafi,et al.  Bent-beam strain sensors , 1996 .

[18]  T. Christenson,et al.  Thermo-magnetic metal flexure actuators , 1992, Technical Digest IEEE Solid-State Sensor and Actuator Workshop.

[19]  J. Korvink,et al.  Dynamic electro-thermal simulation of microsystems—a review , 2005 .

[20]  G. K. Ananthasuresh,et al.  Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator , 2001 .

[21]  David M. Burns,et al.  Design and performance of a double hot arm polysilicon thermal actuator , 1997, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[22]  Yasumasa Okada,et al.  Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K , 1984 .

[23]  Jan E. Vandemeer Nodal Design of Actuators and Sensors (NODAS) , 1998 .

[24]  O. Sigmund,et al.  Compliant electro-thermal microactuators , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[25]  Wensyang Hsu,et al.  An electro-thermally and laterally driven polysilicon microactuator , 1997 .

[26]  Gary K. Fedder Issues in MEMS macromodeling , 2003, Proceedings of the 2003 IEEE International Workshop on Behavioral Modeling and Simulation.

[27]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[28]  T. Hubbard,et al.  Time and frequency response of two-arm micromachined thermal actuators , 2003 .

[29]  Gary K. Fedder,et al.  Hierarchical Representation and Simulation of Micromachined Inertial Sensors , 1998 .

[30]  Y. Gianchandani,et al.  Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices , 2001 .

[31]  S. D. Senturia,et al.  CAD challenges for microsensors, microactuators, and microsystems , 1998, Proc. IEEE.

[32]  P. Lerch,et al.  Modelization and characterization of asymmetrical thermal micro-actuators , 1996 .