Stretchable Spin Valves on Elastomer Membranes by Predetermined Periodic Fracture and Random Wrinkling

The first highly stretchable and sensitive spin valve sensor on elastomeric membranes are demonstrated. The sensor elements exhibit stable GMR behavior up to tensile strains of 29% in in situ stretching experiments and show no fatigue over 500 loading cycles. This remarkable stretchability is achieved by a predetermined periodic fracture mechanism that creates a meander-like pattern upon stretching.

[1]  Karim Bouzehouane,et al.  Magnetoresistance in magnetic tunnel junctions grown on flexible organic substrates , 2010 .

[2]  Alfredo García-Arribas,et al.  Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing , 2012, Nanoscale Research Letters.

[3]  Oliver G. Schmidt,et al.  Towards Flexible Magnetoelectronics: Buffer‐Enhanced and Mechanically Tunable GMR of Co/Cu Multilayers on Plastic Substrates , 2008 .

[4]  R. Spolenak,et al.  The relationship between thin film fragmentation and buckle formation: Synchrotron-based in situ studies and two-dimensional stress analysis , 2009 .

[5]  F. Mazaleyrat,et al.  In situ tailoring of magnetization configuration in NiFe film deposited onto flexible substrate , 2012 .

[6]  Christopher S. Chen,et al.  High‐Conductivity Elastomeric Electronics , 2004 .

[7]  Stéphanie P. Lacour,et al.  Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates , 2009 .

[8]  Sigurd Wagner,et al.  Mechanisms of reversible stretchability of thin metal films on elastomeric substrates , 2006 .

[9]  Stuart S. P. Parkin,et al.  Giant Magnetoresistance in Magnetic Nanostructures , 1995 .

[10]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[11]  G. Dehm,et al.  The effect of film thickness variations in periodic cracking: Analysis and experiments , 2011 .

[12]  S. Takayama,et al.  Fracture of metal coated elastomers , 2011 .

[13]  S. Parkin,et al.  Flexible giant magnetoresistance sensors , 1996 .

[14]  S. Takayama,et al.  Periodic cracking of films supported on compliant substrates. , 2011, Journal of the mechanics and physics of solids.

[15]  John A Rogers,et al.  Stretchable, Curvilinear Electronics Based on Inorganic Materials , 2010, Advanced materials.

[16]  L. Mahadevan,et al.  Nested self-similar wrinkling patterns in skins , 2005, Nature materials.

[17]  S. Wagner,et al.  Controlling the morphology of gold films on poly(dimethylsiloxane). , 2010, ACS applied materials & interfaces.

[18]  O. Schmidt,et al.  Principles and applications of micro and nanoscale wrinkles , 2010 .

[19]  Y. Mei,et al.  Thinning and Shaping Solid Films into Functional and Integrative Nanomembranes , 2012, Advanced materials.

[20]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[21]  Daniil Karnaushenko,et al.  Printable Giant Magnetoresistive Devices , 2012, Advanced materials.

[22]  H. Holloway,et al.  Giant magnetoresistance in Co/Cu multilayers: Influence of Co thickness at the first antiferromagnetic maximum , 1996 .

[23]  Benjamin C. K. Tee,et al.  Stretchable Organic Solar Cells , 2011, Advanced materials.

[24]  M. Labrune,et al.  Magnetization rotation in spin-valve multilayers , 1997 .

[25]  Z. Suo,et al.  Stretchable gold conductors on elastomeric substrates , 2003 .

[26]  Daniil Karnaushenko,et al.  Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects. , 2011, ACS nano.

[27]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[28]  Daniil Karnaushenko,et al.  Elastic magnetic sensor with isotropic sensitivity for in-flow detection of magnetic objects , 2012 .

[29]  R. Spolenak,et al.  Dimensional control of brittle nanoplatelets. A statistical analysis of a thin film cracking approach. , 2006, Nano letters.