A constructive approach to Schaeffer's conjecture

J.J. Schaeffer proved that for $any$ induced matrix norm and $any$ invertible $T=T(n)$ the inequality \[\left|\det T\right|\left\Vert T^{-1}\right\Vert \leq\mathcal{S}\left\Vert T\right\Vert ^{n-1}\] holds with $\mathcal{S}=\mathcal{S}(n)\leq\sqrt{en}$. He conjectured that the best $\mathcal{S}$ was actually bounded. This was rebutted by Gluskin-Meyer-Pajor and subsequent contributions by J. Bourgain and H. Queffelec that successively improved lower estimates on $\mathcal{S}$. These articles rely on a link to the theory of power sums of complex numbers. A probabilistic or number theoretic analysis of such inequalities is employed to prove the existence of $T$ with growing $\mathcal{S}$ but the explicit construction of such $T$ remains an open task. In this article we propose a constructive approach to Schaeffer's conjecture that is not related to power sum theory. As a consequence we present an explicit sequence of Toeplitz matrices with singleton spectrum $\{\lambda\}\subset\mathbb{D}-\{0\}$ such that $\mathcal{S}\geq c(\lambda)\sqrt{n}$. Our framework naturally extends to provide lower estimates on the resolvent $\left\Vert (\zeta-T)^{-1}\right\Vert$ when $\zeta\neq0$. We also obtain new upper estimates on the resolvent when the spectrum is given. This yields new upper bounds on $\left\Vert T^{-1}\right\Vert$ in terms of the eigenvalues of $T$ which slightly refine Schaeffer's original estimate.

[1]  O. Szehr,et al.  lp-norms of Fourier coefficients of powers of a Blaschke factor , 2017, Journal d'Analyse Mathématique.

[2]  O. Szehr,et al.  On the asymptotic behavior of jacobi polynomials with varying parameters , 2016 .

[3]  O. Szehr Eigenvalue estimates for the resolvent of a non-normal matrix , 2013, 1305.7208.

[4]  Michael M. Wolf,et al.  Spectral Convergence Bounds for Classical and Quantum Markov Processes , 2013, 1301.4827.

[5]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[6]  J. Andersson Turan's problem 10 revisited , 2006, math/0609271.

[7]  B. Simon,et al.  Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.

[8]  J. Andersson On some power sum problems of Turán and Erdős , 1996 .

[9]  A. Pajor,et al.  Zeros of analytic functions and norms of inverse matrices , 1994 .

[10]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[11]  F. W. J. Olver,et al.  Error Bounds for Stationary Phase Approximations , 1974 .

[12]  J. Schäffer Norms and Determinants of Linear Mappings. , 1970 .

[13]  Paul Erdös,et al.  A probabilistic approach to problems of Diophantine approximation , 1957 .

[14]  C. Chester,et al.  An extension of the method of steepest descents , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  A. Erdélyi,et al.  Asymptotic Representations of Fourier Integrals and the Method of Stationary Phase , 1955 .

[16]  O. Szehr Spectral Methods for Quantum Markov Chains , 2014 .

[17]  N. Nikolski CONDITION NUMBERS OF LARGE MATRICES, AND ANALYTIC CAPACITIES , 2006 .

[18]  H. Montgomery Ten lectures on the interface between analytic number theory and harmonic analysis , 1994 .

[19]  H. Queffélec Sur un théorème de Gluskin-Meyer-Pajor , 1993 .

[20]  C. Foias,et al.  The commutant lifting approach to interpolation problems , 1990 .

[21]  Paul Turán,et al.  On a new method of analysis and its applications , 1984 .

[22]  C. Foias,et al.  Harmonic Analysis of Operators on Hilbert Space , 1970 .