Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems

Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e., a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi:10.1007/s00222-015-0604-x). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σj(Σ, g) L(∂Σ, g) over a class of smooth metrics, g, where σj(Σ, g) is the jth nonzero Steklov eigenvalue and L(∂Σ, g) is the length of ∂Σ. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus γ = 0 and b = 2, …, 9, 12, 15, 20 boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with b = 2 boundary components and for the third and fifth eigenvalues with b = 3 boundary components.

[1]  M. Karpukhin Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds , 2015, 1512.09038.

[2]  Iosif Polterovich,et al.  SPECTRAL GEOMETRY OF THE STEKLOV PROBLEM , 2014, 1411.6567.

[3]  P. D. Lamberti,et al.  Viewing the Steklov eigenvalues of the Laplace operator as critical Neumann eigenvalues , 2014, 1410.0517.

[4]  Pedro Freitas,et al.  Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians , 2012, J. Optim. Theory Appl..

[5]  Ahmad El Soufi,et al.  Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold , 2007, 0705.1263.

[6]  B. Bogosel,et al.  Optimal Shapes Maximizing the Steklov Eigenvalues , 2017, SIAM J. Math. Anal..

[7]  Jorge Nocedal,et al.  Knitro: An Integrated Package for Nonlinear Optimization , 2006 .

[8]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[9]  K. Flanagan,et al.  Laser spectroscopy of indium Rydberg atom bunches by electric field ionization , 2020, Scientific Reports.

[10]  R. Benguria,et al.  Existence and non-existence of minimizers for Poincaré–Sobolev inequalities , 2019, Calculus of Variations and Partial Differential Equations.

[11]  Iosif Polterovich,et al.  Spectral geometry of the Steklov problem (Survey article) , 2017 .

[12]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[13]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[14]  R. Petrides,et al.  Free boundary minimal surfaces of any topological type in Euclidean balls via shape optimization , 2020, 2004.06051.

[15]  Braxton Osting,et al.  Optimization of spectral functions of Dirichlet-Laplacian eigenvalues , 2010, J. Comput. Phys..

[16]  Wei Zeng,et al.  Generalized Koebe's method for conformal mapping multiply connected domains , 2009, Symposium on Solid and Physical Modeling.

[17]  R. Laugesen,et al.  Steklov Eigenvalues and Quasiconformal Maps of Simply Connected Planar Domains , 2014, 1412.8073.

[18]  C. Kao,et al.  Minimal Convex Combinations of Three Sequential Laplace-Dirichlet Eigenvalues , 2013 .

[19]  Braxton Osting,et al.  Computational Methods for Extremal Steklov Problems , 2016, SIAM J. Control. Optim..

[20]  Edouard Oudet,et al.  Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .

[21]  SERIES SOLUTION OF LAPLACE PROBLEMS , 2018, The ANZIAM Journal.

[22]  Édouard Oudet,et al.  Qualitative and Numerical Analysis of a Spectral Problem with Perimeter Constraint , 2016, SIAM J. Control. Optim..

[23]  Pedro R. S. Antunes,et al.  Numerical Minimization of Dirichlet Laplacian Eigenvalues of Four-Dimensional Geometries , 2017, SIAM J. Sci. Comput..

[24]  T. Y. Thomas On Conformal Geometry. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Fekete Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1918 .

[26]  Jimmy Lamboley,et al.  An extremal eigenvalue problem for the Wentzell-Laplace operator , 2014, 1401.7098.

[27]  Rongjie Lai,et al.  Maximization of Laplace−Beltrami eigenvalues on closed Riemannian surfaces , 2014, 1405.4944.

[28]  Braxton Osting,et al.  Minimal Convex Combinations of Sequential Laplace-Dirichlet Eigenvalues , 2013, SIAM J. Sci. Comput..

[29]  Chiu-Yen Kao,et al.  Maximal Convex Combinations of Sequential Steklov Eigenvalues , 2019, J. Sci. Comput..

[30]  Lloyd N. Trefethen,et al.  SERIES SOLUTION OF LAPLACE PROBLEMS , 2018, The ANZIAM Journal.

[31]  Luen-Fai Tam,et al.  Extremal problems for Steklov eigenvalues on annuli , 2015 .

[32]  R. Schoen,et al.  Some results on higher eigenvalue optimization , 2019, Calculus of Variations and Partial Differential Equations.

[33]  Iosif Polterovich,et al.  Upper bounds for Steklov eigenvalues on surfaces , 2012, 1202.5108.

[34]  R. Schoen,et al.  Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.

[35]  G. Szegö Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten , 1924 .

[36]  Peter J. Olver,et al.  Complex Analysis and Conformal Mapping , 2015 .

[37]  Robert Weinstock,et al.  Inequalities for a Classical Eigenvalue Problem , 1954 .

[38]  R. Schoen,et al.  Minimal surfaces and eigenvalue problems , 2013, 1304.0851.

[39]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[40]  F. P. Gardiner,et al.  Quasiconformal Teichmuller Theory , 1999 .

[41]  Alexandre Girouard,et al.  Large Steklov eigenvalues via homogenisation on manifolds , 2020, Inventiones mathematicae.

[42]  Bodo Dittmar,et al.  Sums of reciprocal Stekloff eigenvalues , 2004 .

[43]  M. Li Free boundary minimal surfaces in the unit ball : recent advances and open questions , 2019, 1907.05053.