Validation and Confirmation of Associations

[1]  John P. A. Ioannidis,et al.  Meta-analysis for ranked discovery datasets: Theoretical framework and empirical demonstration for microarrays , 2008, Comput. Biol. Chem..

[2]  Siobhan M. Dolan,et al.  Assessment of cumulative evidence on genetic associations: interim guidelines. , 2008, International journal of epidemiology.

[3]  Nikolaos A Patsopoulos,et al.  Uncertainty in heterogeneity estimates in meta-analyses , 2007, BMJ : British Medical Journal.

[4]  John P A Ioannidis,et al.  Almost all articles on cancer prognostic markers report statistically significant results. , 2007, European journal of cancer.

[5]  P. Donnelly,et al.  Replicating genotype–phenotype associations , 2007, Nature.

[6]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[7]  John P.A. Ioannidis,et al.  Non-Replication and Inconsistency in the Genome-Wide Association Setting , 2007, Human Heredity.

[8]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[9]  J. Ioannidis,et al.  An exploratory test for an excess of significant findings , 2007, Clinical trials.

[10]  George Liberopoulos,et al.  Selection in Reported Epidemiological Risks: An Empirical Assessment , 2007, PLoS medicine.

[11]  John P. A. Ioannidis,et al.  The Emergence of Networks in Human Genome Epidemiology: Challenges and Opportunities , 2007, Epidemiology.

[12]  D. Blacker,et al.  Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database , 2007, Nature Genetics.

[13]  Ola Larsson,et al.  Lack of correct data format and comparability limits future integrative microarray research , 2006, Nature Biotechnology.

[14]  Yongjin Li,et al.  Discovering disease-genes by topological features in human protein-protein interaction network , 2006, Bioinform..

[15]  Rainer Breitling,et al.  RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis , 2006, Bioinform..

[16]  J. Ioannidis,et al.  An empirical evaluation of multifarious outcomes in pharmacogenetics: beta-2 adrenoceptor gene polymorphisms in asthma treatment , 2006, Pharmacogenetics and genomics.

[17]  Trupti Joshi,et al.  Inferring gene regulatory networks from multiple microarray datasets , 2006, Bioinform..

[18]  J. Ioannidis Commentary: grading the credibility of molecular evidence for complex diseases. , 2006, International journal of epidemiology.

[19]  Tania B. Huedo-Medina,et al.  Assessing heterogeneity in meta-analysis: Q statistic or I2 index? , 2006, Psychological methods.

[20]  L. Ein-Dor,et al.  Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ruth Etzioni,et al.  Combining Results of Microarray Experiments: A Rank Aggregation Approach , 2006 .

[22]  Paolo Vineis,et al.  A road map for efficient and reliable human genome epidemiology , 2006, Nature Genetics.

[23]  K. Abrams,et al.  Bayesian implementation of a genetic model‐free approach to the meta‐analysis of genetic association studies , 2005, Statistics in medicine.

[24]  J. Ioannidis,et al.  Local Literature Bias in Genetic Epidemiology: An Empirical Evaluation of the Chinese Literature , 2005, PLoS medicine.

[25]  Roland Eils,et al.  Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes , 2005, BMC Bioinformatics.

[26]  David R. Jones,et al.  How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS , 2005, Statistics in medicine.

[27]  Paolo Vineis,et al.  A network of investigator networks in human genome epidemiology. , 2005, American journal of epidemiology.

[28]  J. Ioannidis Why Most Published Research Findings Are False , 2005, PLoS medicine.

[29]  Christian Pilarsky,et al.  Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes , 2005, Oncogene.

[30]  Thomas A Trikalinos,et al.  Early extreme contradictory estimates may appear in published research: the Proteus phenomenon in molecular genetics research and randomized trials. , 2005, Journal of clinical epidemiology.

[31]  D. Ransohoff Lessons from controversy: ovarian cancer screening and serum proteomics. , 2005, Journal of the National Cancer Institute.

[32]  John P A Ioannidis,et al.  Heterogeneity testing in meta‐analysis of genome searches , 2005, Genetic epidemiology.

[33]  D. Altman,et al.  Outcome reporting bias in randomized trials funded by the Canadian Institutes of Health Research , 2004, Canadian Medical Association Journal.

[34]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Hrõbjartsson,et al.  Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. , 2004, JAMA.

[36]  Nathaniel Rothman,et al.  Assessing the Probability That a Positive Report is False: An Approach for Molecular Epidemiology Studies , 2004 .

[37]  S Loesgen,et al.  Meta‐Analysis of Linkage Studies for Complex Diseases: An Overview of Methods and a Simulation Study , 2004, Annals of human genetics.

[38]  Frank Dudbridge,et al.  Rank truncated product of P‐values, with application to genomewide association scans , 2003, Genetic epidemiology.

[39]  J. Ioannidis,et al.  Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment , 2003, The Lancet.

[40]  Guido Jenster,et al.  Venn Mapping: clustering of heterologous microarray data based on the number of co-occurring differentially expressed genes , 2003, Bioinform..

[41]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[42]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[43]  E. Lander,et al.  Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease , 2003, Nature Genetics.

[44]  M. Radmacher,et al.  Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. , 2003, Journal of the National Cancer Institute.

[45]  Rudy Guerra,et al.  Meta-analysis of genetic-linkage analysis of quantitative-trait loci. , 2002, American journal of human genetics.

[46]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[47]  J. Hirschhorn,et al.  A comprehensive review of genetic association studies , 2002, Genetics in Medicine.

[48]  B S Weir,et al.  Truncated product method for combining P‐values , 2002, Genetic epidemiology.

[49]  J Blangero,et al.  Large upward bias in estimation of locus-specific effects from genomewide scans. , 2001, American journal of human genetics.

[50]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[51]  J. Ioannidis,et al.  Replication validity of genetic association studies , 2001, Nature Genetics.

[52]  A Whitehead,et al.  Meta‐analysis of ordinal outcomes using individual patient data , 2001, Statistics in medicine.

[53]  A Whitehead,et al.  Meta‐analysis of continuous outcome data from individual patients , 2001, Statistics in medicine.

[54]  J. Ioannidis,et al.  Evolution of treatment effects over time: empirical insight from recursive cumulative metaanalyses. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Douglas G. Altman,et al.  Systematic Reviews in Health Care , 2001 .

[56]  J. Lanchbury,et al.  Meta‐analysis of genome searches , 1999, Annals of human genetics.

[57]  S. Thompson,et al.  Detecting and describing heterogeneity in meta-analysis. , 1998, Statistics in medicine.

[58]  J. Ioannidis Effect of the statistical significance of results on the time to completion and publication of randomized efficacy trials. , 1998, JAMA.

[59]  C. Lengeler,et al.  Language bias in randomised controlled trials published in English and German , 1997, The Lancet.

[60]  L Kruglyak,et al.  Parametric and nonparametric linkage analysis: a unified multipoint approach. , 1996, American journal of human genetics.

[61]  Zhaohai Li,et al.  Random effects model for meta‐analysis of multiple quantitative sibpair linkage studies , 1996, Genetic epidemiology.

[62]  K. Dickersin,et al.  Publication Bias: The Problem That Won't Go Away , 1993, Annals of the New York Academy of Sciences.

[63]  F. Mosteller,et al.  A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts. Treatments for myocardial infarction. , 1992, JAMA.

[64]  R F Galbraith,et al.  A note on graphical presentation of estimated odds ratios from several clinical trials. , 1988, Statistics in medicine.

[65]  N. Laird,et al.  Meta-analysis in clinical trials. , 1986, Controlled clinical trials.

[66]  R. Peto,et al.  Beta blockade during and after myocardial infarction: an overview of the randomized trials. , 1985, Progress in cardiovascular diseases.

[67]  W. Haenszel,et al.  Statistical aspects of the analysis of data from retrospective studies of disease. , 1959, Journal of the National Cancer Institute.

[68]  W. G. Cochran The combination of estimates from different experiments. , 1954 .