Monge extensions of cooperation and communication structures

Cooperation structures without any {\it a priori} assumptions on the combinatorial structure of feasible coalitions are studied and a general theory for mar\-ginal values, cores and convexity is established. The theory is based on the notion of a Monge extension of a general characteristic function, which is equivalent to the Lovasz extension in the special situation of a classical cooperative game. It is shown that convexity of a cooperation structure is tantamount to the equality of the associated core and Weber set. Extending Myerson's graph model for game theoretic communication, general communication structures are introduced and it is shown that a notion of supermodularity exists for this class that characterizes convexity and properly extends Shapley's convexity model for classical cooperative games.

[1]  Ulrich Faigle,et al.  Two-phase greedy algorithms for some classes of combinatorial linear programs , 2008, TALG.

[2]  Roger B. Myerson,et al.  Graphs and Cooperation in Games , 1977, Math. Oper. Res..

[3]  Michel Grabisch,et al.  Games on lattices, multichoice games and the shapley value: a new approach , 2007, Math. Methods Oper. Res..

[4]  Ulrich Faigle,et al.  On the core of ordered submodular cost games , 2000, Math. Program..

[5]  G. Owen,et al.  Games with permission structures: The conjunctive approach , 1992 .

[6]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[7]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[8]  Tatsuro Ichiishi,et al.  Super-modularity: Applications to convex games and to the greedy algorithm for LP , 1981 .

[9]  L. Shapley Cores of convex games , 1971 .

[10]  Jesús Mario Bilbao Cooperative Games under Augmenting Systems , 2003, SIAM J. Discret. Math..

[11]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[12]  L. Shapley A Value for n-person Games , 1988 .

[13]  Jesús Mario Bilbao,et al.  Cooperative games on antimatroids , 2004, Discret. Math..

[14]  Ulrich Faigle,et al.  Geometries on partially ordered sets , 1980, J. Comb. Theory B.

[15]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[16]  G. Choquet Theory of capacities , 1954 .

[17]  Characterizations of k-convex games , 1999 .

[18]  Ulrich Faigle Cores of games with restricted cooperation , 1989, ZOR Methods Model. Oper. Res..

[19]  D. Schmeidler Integral representation without additivity , 1986 .

[20]  T. E. S. Raghavan,et al.  Shapley Value for Multichoice Cooperative Games, I , 1993 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[23]  A. Roth The Shapley value , 2005, Game Theory.

[24]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[25]  Jean J. M. Derks,et al.  Hierarchical organization structures and constraints on coalition formation , 1995 .

[26]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[27]  Jesús Mario Bilbao,et al.  The core of games on convex geometries , 1999, Eur. J. Oper. Res..

[28]  Laetitia Blanche,et al.  ACADÉMIE DES SCIENCES , 2010 .

[29]  Michel Grabisch,et al.  Values on regular games under Kirchhoff's laws , 2009, Math. Soc. Sci..

[30]  Jesús Mario Bilbao,et al.  The core and the Weber set of games on augmenting systems , 2010, Discret. Appl. Math..

[31]  U. Faigle,et al.  The Shapley value for cooperative games under precedence constraints , 1992 .

[32]  J. M. Bilbao,et al.  The Lovász Extension of Market Games , 2004 .

[33]  Jesús Mario Bilbao,et al.  The Myerson value for union stable structures , 2001, Math. Methods Oper. Res..