X-Ray Properties of the Gigahertz Peaked and Compact Steep Spectrum Sources

We present Chandra X-ray Observatory observations of gigahertz peaked-spectrum (GPS) and compact steep spectrum (CSS) radio sources. The Chandra sample contains 13 quasars and 3 galaxies, with measured 2-10 keV X-ray luminosities within 1042-1046 erg s−1. We detect all of the sources, five of which are observed in X-rays for the first time. We study the X-ray spectral properties of the sample. The measured absorption columns in the quasars are different from those in the galaxies in that the quasars show no absorption (with limits ~1021 cm−2), while the galaxies have large absorption columns (>1022 cm−2) consistent with previous findings. The median photon index of the sources with a high signal-to-noise ratio is Γ = 1.84 ± 0.24, which is larger than the typical index of radio-loud quasars. The arcsec resolution of the Chandra telescope allows us to investigate extended X-ray emission and to look for diffuse components and X-ray jets. We found X-ray jets in two quasars (PKS 1127–145 and B2 0738+32), and an X-ray cluster surrounding a CSS quasar (3C 186; z = 1.1). We detected a possible binary structure in galaxy 0941–080 and an extended diffuse emission in galaxy PKS B1345+125. We discuss our results in the context of X-ray emission processes and radio source evolution. We conclude that the X-ray emission in these sources is most likely unrelated to a relativistic jet, although the sources’ radio loudness may suggest a high radiative efficiency for the jet power in these sources.

[1]  Brandon C. Kelly,et al.  Observational Constraints on the Dependence of Radio-Quiet Quasar X-Ray Emission on Black Hole Mass and Accretion Rate , 2008, 0801.2383.

[2]  J. Kataoka,et al.  Evolution of and High-Energy Emission from GHz-Peaked Spectrum Sources , 2007, 0712.1220.

[3]  R. Morganti The interplay between radio jets and ISM in sub-kpc radio sources , 2007, 0710.1197.

[4]  P. Nulsen,et al.  Heating Hot Atmospheres with Active Galactic Nuclei , 2007, 0709.2152.

[5]  T. Aldcroft,et al.  The 300 kpc Long X-Ray Jet in PKS 1127–145, z = 1.18 Quasar: Constraining X-Ray Emission Models , 2006, astro-ph/0611406.

[6]  T. Aldcroft,et al.  Evolution of the X-ray Emission of Radio-quiet Quasars , 2006, astro-ph/0611120.

[7]  S. Baum,et al.  XMM-Newton Detection of X-Ray Emission from the Compact Steep-Spectrum Radio Galaxy 3C 303.1 , 2006, astro-ph/0608320.

[8]  D. Harris,et al.  X-Ray Emission from Extragalactic Jets , 2006, astro-ph/0607228.

[9]  D. J. Saikia,et al.  Probing radio source environments via H i and OH absorption , 2006, astro-ph/0605423.

[10]  J. Lasota,et al.  Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications , 2006, astro-ph/0604095.

[11]  A. Szalay,et al.  Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars , 2006, astro-ph/0601558.

[12]  Dwingeloo,et al.  The X‐ray properties of young radio‐loud AGN , 2006, astro-ph/0601141.

[13]  Mathematics,et al.  High-redshift Faranoff-Riley type II radio galaxies: X-ray properties of the cores , 2005, astro-ph/0511606.

[14]  The University of Manchester,et al.  Signatures of restarted activity in core-dominated, triple radio sources selected from the FIRST survey , 2005, astro-ph/0510773.

[15]  S. Baum,et al.  Extended emission around GPS radio sources , 2005, astro-ph/0507499.

[16]  T. Aldcroft,et al.  X-Ray Cluster Associated with the z = 1.063 CSS Quasar 3C 186: The Jet is Not Frustrated , 2005, astro-ph/0506394.

[17]  The University of Manchester,et al.  FIRST-based survey of Compact Steep Spectrum sources II. MERLIN and VLA observations of medium-sized symmetric objects , 2005, astro-ph/0505435.

[18]  M. Giroletti,et al.  Dating COINS: Kinematic Ages for Compact Symmetric Objects , 2004, astro-ph/0412199.

[19]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. II. Patchy Corona Model , 2004, astro-ph/0410206.

[20]  M. Guainazzi,et al.  XMM-Newton discovery of a Compton-thick AGN in the GPS galaxy Mkn 668 , 2004 .

[21]  Swinburne,et al.  New candidate GHz peaked spectrum and compact steep spectrum sources , 2004, astro-ph/0407010.

[22]  A. Siemiginowska,et al.  High-Redshift Radio-quiet Quasars: Exploring the Parameter Space of Accretion Models. I. Hot Semispherical Flow , 2004, astro-ph/0410204.

[23]  A. Janiuk,et al.  On the Turbulent α-Disks and the Intermittent Activity in Active Galactic Nuclei , 2004 .

[24]  Aneta Siemiginowska,et al.  X-Ray Emission from the Quasar PKS 1127–145: Comptonized Infrared Photons on Parsec Scales , 2003, astro-ph/0311411.

[25]  T. Aldcroft,et al.  Discovery of X-ray jets in GPS sources , 2003 .

[26]  A. Readhead,et al.  The relationship between the X-ray and radio components in the compact steep-spectrum quasar 3C 48 , 2003, astro-ph/0309737.

[27]  D. Dewey,et al.  An Overview of the Performance of the Chandra X-ray Observatory , 2003, astro-ph/0503319.

[28]  A. Peck,et al.  Identifying Compact Symmetric Objects in the Southern Sky , 2003, astro-ph/0307151.

[29]  L. A. Antonelli,et al.  Chandra Discovery of an X-Ray Jet and Extended X-Ray Structure in the z = 0.63 Quasar B2 0738+313 , 2003, astro-ph/0306129.

[30]  Astron.,et al.  Highly extinguished emission line outflows in the young radio source PKS 1345+12 , 2003, astro-ph/0302311.

[31]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[32]  J. Conway,et al.  Proper Motions in Compact Symmetric Objects , 2002, Publications of the Astronomical Society of Australia.

[33]  M. Sikora,et al.  On the Nature of MeV Blazars , 2002, astro-ph/0205527.

[34]  T. Aldcroft,et al.  Chandra Discovery of a 300 Kiloparsec X-Ray Jet in the Gigahertz-peaked Spectrum Quasar PKS 1127–145 , 2002 .

[35]  P. Alexander Evolutionary models for radio sources from compact sources to classical doubles , 2002 .

[36]  M. Perucho,et al.  Physical Parameters in the Hot Spots and Jets of Compact Symmetric Objects , 2001, astro-ph/0111579.

[37]  John E. Davis,et al.  Event Pileup in Charge-coupled Devices , 2001 .

[38]  Aneta Siemiginowska,et al.  Sherpa: a mission-independent data analysis application , 2001, SPIE Optics + Photonics.

[39]  S. Baum,et al.  Erratum: VLBA observations of GHz-Peaked-Spectrum radio sources at 15 GHz , 2001, astro-ph/0108185.

[40]  T. Aldcroft,et al.  Chandra Detection of X-Ray Absorption Associated with a Damped Lyα System , 2001, astro-ph/0107003.

[41]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[42]  R. Morganti,et al.  The Morphology of the Emission-Line Region Of Compact Steep-Spectrum Radio Sources , 2000, astro-ph/0006355.

[43]  D. Thompson,et al.  Identifications and spectroscopy of Gigahertz Peaked Spectrum sources. II. , 2000 .

[44]  H. Rottgering,et al.  On the evolution of young radio-loud AGN , 2000, astro-ph/0002130.

[45]  S. Baum,et al.  ASCA Observations of the Gigahertz-peaked Spectrum Radio Galaxies 1345+125 and 2352+495 , 2000 .

[46]  C. O’Dea The Compact Steep‐Spectrum and Gigahertz Peaked‐Spectrum Radio Sources , 1998 .

[47]  S. Baum,et al.  ASTRONOMY AND ASTROPHYSICS Evaporation of the accretion disk in dwarf novae during quiescence , 1997 .

[48]  Philippe Veron,et al.  A catalogue of quasars and active nuclei: 12th edition , 1998 .

[49]  C. Reynolds,et al.  X-Ray Signatures of Evolving Radio Galaxies , 1998, astro-ph/9801268.

[50]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[51]  J. Poutanen,et al.  Learning about Active Galactic Nucleus Jets from Spectral Properties of Blazars , 1997 .

[52]  B. Czerny,et al.  Evolution of an Accretion Disk in an Active Galactic Nucleus , 1996 .

[53]  D. R. Henstock,et al.  The second Caltech-Jodrell Bank VLBI survey. 1: Observations of 91 of 193 sources , 1994 .

[54]  M. Rieke,et al.  X-ray spectral evolution of high redshift quasars , 1994 .

[55]  M. Rieke,et al.  Infrared to x-ray spectral energy distributions of high redshift quasars , 1994 .

[56]  B. Wilkes,et al.  Absorption in X-ray spectra of high-redshift quasars , 1994 .

[57]  A. Fabian,et al.  The effects of photoionization on X-ray reflection spectra in active galactic nuclei , 1993 .

[58]  Carl Heiles,et al.  The bell laboratories H I survey , 1992 .

[59]  S. Baum,et al.  What are the gigahertz peaked-spectrum radio sources ? , 1991 .

[60]  A. Readhead,et al.  The milliarcsecond structure of a complete sample of radio sources. II: First-epoch maps at 5 GHz , 1988 .

[61]  R. Green,et al.  Surveys of Fields around Quasars. IV. Luminosity of Galaxies at Z approximately equal to 0.6 and Preliminary Evidence for the Evolution of the Environment of Radio-loud Quasars , 1987 .

[62]  T. Muxlow,et al.  A sample of powerful radio sources for VLBI studies , 1986 .

[63]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[64]  S. Baum,et al.  Constraints on Radio Source Evolution from the Compact Steep Spectrum and GHz Peaked Spectrum Radio Sources , 1997 .

[65]  D. Young The Evolution of Compact Steep Spectrum Sources , 1993 .