Lectures on the Geometry of Flag Varieties
暂无分享,去创建一个
[1] P. Pragacz,et al. A Pieri-type formula for even orthogonal Grassmannians , 2003 .
[2] P. Pragacz,et al. Pieri type formula for isotropic Grassmannians; The operator approach , 1993 .
[3] B. Kostant,et al. T-equivariant K-theory of generalized flag varieties , 1987 .
[4] B Kostant,et al. The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[5] P. Littelmann. Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras , 1998 .
[6] W. Fulton. Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .
[7] David Mumford,et al. Toroidal Embeddings I , 1973 .
[8] S. Ramanan,et al. Projective normality of flag varieties and Schubert varieties , 1985 .
[9] L. Manivel. Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence , 1998 .
[10] Haibao Duan,et al. Morse Functions and Cohomology of Homogeneous Spaces , 2004, math/0408012.
[11] Andreas Arvanitoyeorgos,et al. GEOMETRY OF FLAG MANIFOLDS , 2006 .
[12] Brian D. Boe,et al. Pieri formula for SO2n + 1Un and SpnUn , 1986 .
[13] Alexander Grothendieck,et al. Sur quelques points d'algèbre homologique, I , 1957 .
[14] Sara Billey,et al. Singular Loci of Schubert Varieties , 2000 .
[15] Arun Ram,et al. Affine Hecke algebras and the Schubert calculus , 2004, Eur. J. Comb..
[16] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells , 1985 .
[17] Michel Demazure,et al. Désingularisation des variétés de Schubert généralisées , 1974 .
[18] Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire , 2001, math/0106130.
[19] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[20] R. Richardson. Intersections of double cosets in algebraic groups , 1992 .
[21] O. Mathieu. Formules de caractères pour les algèbres de Kac-Moody générales , 1988 .
[22] William Fulton,et al. Schubert varieties and degeneracy loci , 1998 .
[23] M. Wodzicki. Lecture Notes in Math , 1984 .
[24] Vinay V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .
[25] Alain Lascoux,et al. A Pieri formula in the Grothendieck ring of a flag bundle , 1994 .
[26] Alain Lascoux,et al. Symmetry and flag manifolds , 1983 .
[27] O. Mathieu. Positivity of some intersections in K0(G/B)☆ , 2000 .
[28] T. A. Springer. Schubert varieties and generalizations , 1998 .
[29] C. S. Seshadri,et al. A Pieri-Chevalley Type Formula for K (G/B) and Standard Monomial Theory , 2003 .
[30] Raoul Bott,et al. Applications of the Theory of Morse to Symmetric Spaces , 1958 .
[31] Anders Skovsted Buch. A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .
[32] P. Pragacz,et al. A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians. , 1996 .
[33] M. Willems. Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux , 2004 .
[34] C. Polini,et al. Commutative Algebra: Interactions with Algebraic Geometry , 2003 .
[35] Shrawan Kumar,et al. Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .
[36] Michel Brion. Positivity in the Grothendieck group of complex flag varieties , 2001 .
[37] A. Ramanathan. Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .
[38] Positivity in equivariant Schubert calculus , 1999, math/9908172.
[39] Santhosh K. P. Kumar,et al. T-equivariant K-theory of generalized flag varieties. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[40] M. Brion. Group completions via Hilbert schemes , 2000, math/0010215.
[41] The Cohomology Ring of Weight Varieties and Polygon Spaces , 2001, math/0201138.
[42] Harry Tamvakis. Gromov-Witten Invariants and Quantum Cohomology of Grassmannians , 2003, math/0306415.
[43] N. Lauritzen,et al. Line bundles on Bott-Samelson varieties , 2004 .
[44] 前野 俊昭. 書評 S.Billey and V.Lakshmibai: Singular Loci of Schubert Varieties , 2002 .
[45] H. Hansen. On Cycles in Flag Manifolds. , 1973 .
[46] P. Littelmann. The Path Model, the Quantum Frobenius Map and Standard Monomial Theory , 1998 .
[47] Jean-Pierre Serre,et al. Le théorème de Riemann-Roch , 1958 .
[48] Steven L. Kleiman,et al. The transversality of a general translate , 1974 .
[49] R. Marlin. Anneaux de Grothendieck des variétés de drapeaux , 1976 .
[50] Maximal singular loci of Schubert varieties in $SL(n)/B$ , 2001, math/0102168.
[51] Sara Billey,et al. On the Singular Locus of a Schubert Variety , 1984 .
[52] Richardson varieties and equivariant K-theory , 2002, math/0201075.
[53] V. B. Mehta,et al. Frobenius splitting and cohomology vanishing for Schubert varieties , 1985 .
[54] John R. Harper,et al. Algebraic topology : a first course , 1982 .
[55] Marie Paule Malliavin,et al. Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin , 1980 .