Lectures on the Geometry of Flag Varieties

These notes are the written version of my lectures at the Banach Center mini-school "Schubert Varieties" in Warsaw, May 18-22, 2003. Their aim is to give a self-contained exposition of some geometric aspects of Schubert calculus.

[1]  P. Pragacz,et al.  A Pieri-type formula for even orthogonal Grassmannians , 2003 .

[2]  P. Pragacz,et al.  Pieri type formula for isotropic Grassmannians; The operator approach , 1993 .

[3]  B. Kostant,et al.  T-equivariant K-theory of generalized flag varieties , 1987 .

[4]  B Kostant,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Littelmann Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras , 1998 .

[6]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[7]  David Mumford,et al.  Toroidal Embeddings I , 1973 .

[8]  S. Ramanan,et al.  Projective normality of flag varieties and Schubert varieties , 1985 .

[9]  L. Manivel Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence , 1998 .

[10]  Haibao Duan,et al.  Morse Functions and Cohomology of Homogeneous Spaces , 2004, math/0408012.

[11]  Andreas Arvanitoyeorgos,et al.  GEOMETRY OF FLAG MANIFOLDS , 2006 .

[12]  Brian D. Boe,et al.  Pieri formula for SO2n + 1Un and SpnUn , 1986 .

[13]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[14]  Sara Billey,et al.  Singular Loci of Schubert Varieties , 2000 .

[15]  Arun Ram,et al.  Affine Hecke algebras and the Schubert calculus , 2004, Eur. J. Comb..

[16]  Vinay V. Deodhar On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells , 1985 .

[17]  Michel Demazure,et al.  Désingularisation des variétés de Schubert généralisées , 1974 .

[18]  Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire , 2001, math/0106130.

[19]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[20]  R. Richardson Intersections of double cosets in algebraic groups , 1992 .

[21]  O. Mathieu Formules de caractères pour les algèbres de Kac-Moody générales , 1988 .

[22]  William Fulton,et al.  Schubert varieties and degeneracy loci , 1998 .

[23]  M. Wodzicki Lecture Notes in Math , 1984 .

[24]  Vinay V. Deodhar Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .

[25]  Alain Lascoux,et al.  A Pieri formula in the Grothendieck ring of a flag bundle , 1994 .

[26]  Alain Lascoux,et al.  Symmetry and flag manifolds , 1983 .

[27]  O. Mathieu Positivity of some intersections in K0(G/B)☆ , 2000 .

[28]  T. A. Springer Schubert varieties and generalizations , 1998 .

[29]  C. S. Seshadri,et al.  A Pieri-Chevalley Type Formula for K (G/B) and Standard Monomial Theory , 2003 .

[30]  Raoul Bott,et al.  Applications of the Theory of Morse to Symmetric Spaces , 1958 .

[31]  Anders Skovsted Buch A Littlewood-Richardson rule for theK-theory of Grassmannians , 2000 .

[32]  P. Pragacz,et al.  A Pieri-type theorem for Lagrangian and odd Orthogonal Grassmannians. , 1996 .

[33]  M. Willems Cohomologie et K-théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux , 2004 .

[34]  C. Polini,et al.  Commutative Algebra: Interactions with Algebraic Geometry , 2003 .

[35]  Shrawan Kumar,et al.  Kac-Moody Groups, their Flag Varieties and Representation Theory , 2002 .

[36]  Michel Brion Positivity in the Grothendieck group of complex flag varieties , 2001 .

[37]  A. Ramanathan Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .

[38]  Positivity in equivariant Schubert calculus , 1999, math/9908172.

[39]  Santhosh K. P. Kumar,et al.  T-equivariant K-theory of generalized flag varieties. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Brion Group completions via Hilbert schemes , 2000, math/0010215.

[41]  The Cohomology Ring of Weight Varieties and Polygon Spaces , 2001, math/0201138.

[42]  Harry Tamvakis Gromov-Witten Invariants and Quantum Cohomology of Grassmannians , 2003, math/0306415.

[43]  N. Lauritzen,et al.  Line bundles on Bott-Samelson varieties , 2004 .

[44]  前野 俊昭 書評 S.Billey and V.Lakshmibai: Singular Loci of Schubert Varieties , 2002 .

[45]  H. Hansen On Cycles in Flag Manifolds. , 1973 .

[46]  P. Littelmann The Path Model, the Quantum Frobenius Map and Standard Monomial Theory , 1998 .

[47]  Jean-Pierre Serre,et al.  Le théorème de Riemann-Roch , 1958 .

[48]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[49]  R. Marlin Anneaux de Grothendieck des variétés de drapeaux , 1976 .

[50]  Maximal singular loci of Schubert varieties in $SL(n)/B$ , 2001, math/0102168.

[51]  Sara Billey,et al.  On the Singular Locus of a Schubert Variety , 1984 .

[52]  Richardson varieties and equivariant K-theory , 2002, math/0201075.

[53]  V. B. Mehta,et al.  Frobenius splitting and cohomology vanishing for Schubert varieties , 1985 .

[54]  John R. Harper,et al.  Algebraic topology : a first course , 1982 .

[55]  Marie Paule Malliavin,et al.  Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin , 1980 .