Compensation of thermo-dependent machine tool deformations due to spindle load: investigation of the optimal transfer function in consideration of rough machining

The thermal behavior of a machine tool is an important indicator for the grade of production accuracy and indirectly for the market success. The load-dependent temperature distribution and the resulting deformation of the machine tool are influenced by a variety of design and thermo-technical parameters. The main spindle of a machine tool is, without any doubt, the major heat source within the machine structure. The object of the scientific investigation presented in this article is the development of an approach to robust compensation of thermo-dependent machine tool deformations due to spindle load in consideration of rough machining. The focus of the work concentrates on the identification of the model with the highest compensation performance. The underlying concept for the compensation of thermo-dependent machine tool deformations is the indirect approach by using the speed and the effective power of the main spindle for the calculation of the Tool Center Point (TCP) displacement. The presented modeling approach requires the knowledge of the TCP displacement in X-, Y- and Z-direction depending on the speed and the effective power of the main spindle. As a tool for modeling the thermo-dependent behavior of a milling machine, a load test rig for repeatable, defined long-term loading of the main spindle has been developed. It simulates the cutting force depending on the spindle speed and the torque and applies load to the main spindle. The spindle speed and the spindle effective power can be taken directly from the numerical control of the machine tool. An important advantage of the presented compensation method is the fact that it does not require any external sensors. The displacement of the TCP has to be measured, but only during modeling. The relationship between the speed/power of the main spindle as a cause and the displacement of the TCP in X-, Y- and Z-direction as an effect can be determined by a transfer function. This paper compares the compensation results depending on the transfer function and identifies the model with the best compensation performance. The validation of the compensation method is executed by using the example of two different speed and power spectra of the main spindle.

[1]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling , 1998 .

[2]  Martin Mareš,et al.  Issues in Identification of Thermal Transfer Functions of Machine Tools , 2009 .

[3]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 3: Real-Time Estimation of Heat Sources , 1999 .

[4]  Christian Brecher,et al.  Optimierung des thermischen Verhaltens von Fräsmaschinen , 2009 .

[5]  James B. Bryan,et al.  International Status of Thermal Error Research (1990) , 1990 .

[6]  Eiji Shamoto,et al.  Analysis of Thermal Deformation of an Ultraprecision Air Spindle System , 1998 .

[7]  Chengrui Zhang,et al.  Fuzzy Logic Thermal Error Compensation for Computer Numerical Control Noncircular Turnning System , 2006, 2006 9th International Conference on Control, Automation, Robotics and Vision.

[8]  Zhenqiang Yao,et al.  Modeling approach of regression orthogonal experiment design for the thermal error compensation of a CNC turning center , 2002 .

[9]  Mamoru Mitsuishi,et al.  Active Thermal Deformation Compensation Based on Internal Monitoring and a Neural Network , 1994 .

[10]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions , 1998 .

[11]  Heui-Jae Pahk,et al.  Thermal Error Measurement and Real Time Compensation System for the CNC Machine Tools Incorporating the Spindle Thermal Error and the Feed Axis Thermal Error , 2002 .

[12]  Christian Brecher,et al.  Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data , 2004 .

[13]  Martin Mareš,et al.  THERMOMECHANICAL TRANSFER FUNCTIONS AND CONTROL OF A MACHINE TOOL COOLING SYSTEM , 2009 .

[14]  John C. Ziegert,et al.  Neural network thermal error compensation of a machining center , 2000 .

[15]  D.-H. Choi,et al.  ICA based thermal source extraction and thermal distortion compensation method for a machine tool , 2003 .

[16]  Bernd-Markus Pfeiffer,et al.  Modellbasierte prädiktive Regelung: Eine Einführung für Ingenieure , 2004 .

[17]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 4: A Multi-Variable Closed-Loop Control System , 1999 .

[18]  Tilo Pfeifer,et al.  100 Jahre Produktionstechnik , 2006 .

[19]  Toshimichi Moriwaki,et al.  Thermal Deformation and Its On-Line Compensation of Hydrostatically Supported Precision Spindle , 1988 .

[20]  Yuan Kang,et al.  Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools , 2007 .

[21]  J. Rauer Experimentelle Modellierung des thermischen Systems von Drehspindeleinheiten , 1992 .

[22]  M. O. M. Osman,et al.  Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 5: Experimental Verification , 1999 .

[23]  Christian Brecher,et al.  Messtechnische Untersuchung von Prozess und Maschine, Beurteilung und Abnahme von Werkzeugmaschinen (ab 1960) , 2006 .

[24]  Jenq-Shyong Chen,et al.  Real-time compensation of time-variant volumetric error on a machining center. , 1993 .

[25]  E. R. McClure,et al.  THERMAL EFFECTS IN PRECISION MACHINING. , 1970 .

[26]  Kun-Chieh Wang Thermal Error Modeling of a Machining Center using Grey System Theory and Adaptive Network-Based Fuzzy Inference System , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[27]  Otakar Horejš,et al.  COMPENSATION OF MACHINE TOOL THERMAL ERRORS BASED ON TRANSFER FUNCTIONS , 2010 .

[28]  Seung-Han Yang,et al.  Thermal error modeling of a horizontal machining center using fuzzy logic strategy , 2001 .